Vacuolating Cytotoxin A (VacA) Gene in Peptic Ulcer Disease and Non-ulcer Dyspepsia

Hashem Fakhre Yaseri 1, 2*, Mehdi Shakaraby 3, 4, Hamid Reza Bradaran 5, Seyed Kamran Soltani Arabshhi 6

1 Gastroenterology, Research Center for Gastroenterology and Liver Diseases, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.

2 Department of Internal Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.

3 Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.

4 Department of Immunology, Pardis Hemmate, Iran University of Medical Sciences, Tehran, Iran.

5 Department of Epidemiology, Iran University of Medical Sciences, Tehran, Iran.

6 Department of Internal Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.

ARTICLE INFO

Article type: Short Communication

Article history:
Received: 10 Dec 2015
Revised: 19 Jan 2016
Accepted: 21 May 2016
Published: 15 Aug 2016

Keywords:
Peptic ulcer disease, Non-ulcer dyspepsia, Vacuolating cytotoxin A (VacA) gene, Vacuolating cytotoxic protein (VacA)

ABSTRACT

Background: Vacuolating cytotoxic A (vacA) gene is one of the multiple Helicobacter pylori genotypes that produce a cytotoxin protein (VacA). This gene is a major cause of chronic peptic ulcers and gastric cancer. The aim of this study was to determine the correlation between vacA gene with peptic ulcer disease (PUD) and non-ulcer dyspepsia (NUD).

Methods: This was a case control study of 130 patients, aged 16-64, with positive H. pylori in histological and Giemsa reports. The case and control groups included 65 PUD patients and 65 NUD patients, respectively. The presence of the vacA gene genotypes was determined using polymerase chain reaction (PCR) on biopsy samples, taken by endoscopy.

Results: In the case group, gastric ulcer was detected in 41.5% (27) of the participants; of whom, 77.8% (21) were female; and duodenal ulcer was found in 58.5% (38) of the participants, of whom, 42.1% (16) were female. The control group (NUD) included 65 patients; of them, 45% (29) were female and the average age was 36.4 ±10.8 years (18 to 60). The total frequency of the vacA gene was 53% (69/130), with 60% in the PUD and 46% in the NUD groups (Odds ratio: 1.75, 95% CI: 1.42-2.12, P=0.25).

Conclusion: The vacA gene alone could not be a reliable diagnostic marker for discriminating peptic ulcer disease from non-ulcer dyspepsia in the Iranian population under study.

*Corresponding Author: Hashem Fakhre Yaseri, Gastroenterology, Research Center for Gastroenterology and Liver Diseases, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran. Tel: +98-02122275836. E-mail: hf_yaseri@yahoo.com

Introduction

*Helicobacter pylori* is a gram-negative bacterium that colonizes the stomach of 50% of the world's population. The prevalence of *H. pylori* in the Iranian population is (90%) more than the developing countries (70%-86%). Most individuals harboring *H. pylori* remain asymptomatic. It is now clear that chronic infection with *H. pylori* is the major cause of peptic ulcer disease and an important factor in gastric adenocarcinoma development (1).

The vacA gene is polymorphic and contains the signal sequence s (s1ors2), a middle region m (m1orm2) and the more recently identified intermediate (i) and deletion (d) regions. The vaculating cytotoxin A (VacA) protein represents one of the major secreted virulence factors of *H. pylori*. The VacA protein is a potential candidate for the virulence of *H. pylori* as well as the cause of peptic ulcer disease. However, vacA gene positive strains have intact cag Pathogenicity Island (PAI), but the vacA gene responsibility in inducing peptic ulcer is still controversial (2-7). It was reported that vacAs1 is the most common allele in the Iranian population (1), and more prevalent in peptic ulcer disease than non-ulcer dyspepsia. However, some researchers did not find a significant association between vacA gene and peptic ulcer disease as a marker of etiologic factor (8-9). Therefore, we aimed to determine whether a correlation existed between vacA gene and peptic ulcer disease and whether the vacA gene alone could discriminate peptic ulcer disease from non-ulcer dyspepsia in our region.

This study was a case-control study. Based on the Leeds Medical School criteria (10), 130 patients, aged 16 - 69 were selected from the patients who referred to the Endoscopy Ward of Firoozgar Hospital with the chief complaint of dyspepsia of over two-month duration. All the patients provided informed consent and accepted to complete a standard questionnaire. An expert endoscopists performed esophagogastroduodenoscopy (EGD) for all the patients in the same center. From the participants, 130 patients with dyspepsia, with or without peptic ulcers were selected and included in the study. We based the eligibility of the patients on the results of the questionnaire and EGD. Those patients who had no history of proved ulcer, previous *H. pylori* eradication, cigarette smoking, malignancy, and other underlying diseases in EGD, and nor did they use proton pump inhibitors or antibiotics (least two months prior to endoscopy) were excluded. Four biopsy specimens were taken from the antrum and gastric body for the histological study and *H. pylori* detection. All the formalin-embedded specimens were fixed and stained with Hematoxylin and Eosin Stain (H&E), or Giemsa. An experienced pathologist evaluated the specimens. When at least five bacilli were found in each microscopic field, the patient was considered positive for *H. Pylori*.

The genomic DNA was extracted from the biopsy samples and stored at -20 °C using a DNA isolation kit for cells and tissues (Roche Applied Science Company) according to the manufacturer's instruction. Two primers were designed complementary to the sequence located within the conserved region of the gene primers: vacA1 and vacA2. The primers sequences are: vacA1, F: 5′-CTG CTT GAA TGC GCC AAA C-3′and R: 5′-CAC AGC CAC TTTCAA TAA CGA-3′; vacA2, F: 5′-ATG GAA ATA CAA CAA ACA CAC-3′ and R: 5′-CGTCAA AAT AAT TCC AAG GG-3′ (11) were used. The amplified products were detected after agarose gel electrophoresis, and a 480 bp (base pair) band indicated the presence of the *H. pylori*-vacA in the specimen.

We analyzed data using SPSS software (Version18). Age was shown with age ± standard deviation. The effects of vacA gene positive on the risk of peptic ulcer were expressed as Odds ratios (ORs) with 95% confidence intervals (CIs) with reference of NUD subjects with *H. Pylori* infections. Proportions were compared by the
Mantel-Haenszel chi-squared test with Yates correction or Fisher exact probability test. A $P$-value of less than 0.05 was considered statistically significant.

Of the case group included 65 PUD patients; of whom, 37 (57%) were female, and their average age was 41.6 ±16.4 (16 to 64). The control (NUD) group included 65 patients; of whom 29 (45%) were female, and their average age was 36.4 ±10.8 years (18 to 60 years old), Table 1. The total frequency of the vacA gene was 69/130 (53%):39/65 (60%) in the PUD group and 30/65 (46%) in the NUD group (Odds ratio: 1.75, 95% CI: 1.42-2.12, $P = 0.25$), Table 2.

**Table 1.** Demographic information of 130 patients with ulcer and non-ulcer dyspepsia.

<table>
<thead>
<tr>
<th>Findings</th>
<th>Number of Patients (%)</th>
<th>Odds Ratio (95% CI)</th>
<th>$P$-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peptic ulcer disease</td>
<td>Non-ulcer dyspepsia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Number)</td>
<td>(%)</td>
<td></td>
</tr>
<tr>
<td>Number of patients</td>
<td>65 (100)</td>
<td>65 (100)</td>
<td>-</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>37 (57)</td>
<td>29 (45%)</td>
<td>-</td>
</tr>
<tr>
<td>Male</td>
<td>28 (43%)</td>
<td>36 (55%)</td>
<td>-</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young (16 to 64)</td>
<td>41.6 ±16.4</td>
<td>36.4 ±10.8</td>
<td>-</td>
</tr>
<tr>
<td>Range (18 to 60)</td>
<td>16 to 64</td>
<td>18 to 60</td>
<td>-</td>
</tr>
<tr>
<td>Ulcer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric</td>
<td>27 (41.5%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Duodenal</td>
<td>38 (58.5%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Genotypes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cagA gene positive</td>
<td>27 (41.5)</td>
<td>16 (24.6)</td>
<td>4.25 (1.25:13.00)</td>
</tr>
<tr>
<td>vacA gene positive</td>
<td>39 (60)</td>
<td>30 (46)</td>
<td>1.75 (1.42:2.12)</td>
</tr>
</tbody>
</table>

Our results revealed that 60% of the patients in the case (peptic ulcer disease) group had vacA gene and that this rate was lower than that (46%) in the control (non-ulcer dyspepsia) group. Although patients receiving acid-inhibiting medications or non-steroidal anti-inflammatory drugs, and smokers were excluded from the study, the results were similar to those reported by previous studies (9). Therefore, vacA gene alone could not be a reliable diagnostic marker for discriminating peptic ulcer disease from non-ulcer dyspepsia in the Iranian population. The effects of vacA allelic combination of *H. pylori* on clinical prognosis show geographic differences in Western and Eastern populations. The VacA protein represents one of the major secreted virulence factors of *H. pylori*. The toxin has two domains, p33 and p55, are cleaved after secretion from the bacteria. The p33 domain is responsible for pore formation rather than enzymatic activity, and the p55 domain is responsible for interaction with the host cell membrane. The VacA protein is capable of internalizing and inducing the formation of intracellular vacuoles due to the osmotic swelling of late endocytic compartments. A large variety of additional cytotoxic functions has been attributed to VacA in the recent years such as altering the endosomal function, inhibiting T-cell proliferation, internalizing and damaging mitochondria, and inducing apoptosis both in epithelial and immune cells. The vacA gene is present nearly in all *H. pylori* strains, including both toxin positive and negative isolates, but only 50% of strains induce toxic vacuolization in certain cell lines (6). Depending on the vacA gene, strains were further classified into three categories of high vacuolation (s1/i1/m1), low vacuolation (s1/i1/m2), and non-vacuolation (s2/i2/m2, s1/i2/m1, s1/i2/m2, and s2/i1/m2). The cagA gene contributes to the development of peptic ulcer disease, while the presence of the vacA gene is a risk factor for increased activity and gastritis severity (5). Based on the presence or absence of the cytotoxin-associated gene-pathogenicity island (cagPAI) and the vaculating cytotoxin (VacA), *H. pylori* strains were categorized as type I or type II, respectively. The correlation between cagA gene and VacA protein expression is not yet clear. The researchers have shown functional antagonism between vacA and cagA gene in host cells in the processes of nuclear factor of activated T-cells (NFAT) and epidermal growth factor (EGF) receptor signaling (2-4) that could cause morphological changes. Patients with peptic ulcer disease show an increase in Th1 and Th2 cellular responses. In contrast, the role of T-regulatory (*Treg*) cells appears as a protective factor against epithelial cell injury. *Treg* cells secrete IL10 is inversely correlated with IL-8 and NF-κB (nuclear factor kappa B) in
asymptomatic carriers (12). Moreover, the cagA gene inactivation has no effect on the expression of VacA or on the ability to induce IL-8. Robinson and colleagues reported that H. pylori-induced peptic ulcer disease is associated with inadequate regulatory T cell responses (3). Furthermore, Oertli et al. showed gamma-glutamyl transpeptidase and vacA gene (two H. pylori antigens) induced Treg cells in the gastric mucosa of mice (7). We previously argued that both cagA and vacA genotypes were more prevalent in the PUD patients than in their NUD counterparts among our Iranian samples (13). This study had some limitations. First, it did not assess factors such as the study population's socioeconomic status, diet, and immune system. In addition, vacA alleles and VacA protein of H. pylori were not studied and referral bias may have existed.

Conclusion

Our study revealed that the vacA gene assessment alone may not be sufficient to understand the virulence potential of a strain and an etiological factor of peptic ulcer disease. Therefore, determining multiple virulence factors, as cagA gene, requires understanding strain dependent disease contributions. However, this hypothesis should be studied in a large number of patients with dyspepsia, and vacA alleles and VacA protein of H. pylori were not studied and referral bias may have existed.

Acknowledgements

We acknowledge the Department of Immunology of Pardis of Hemmat, Iran Medical School, and Gastroenterology, Endoscopy and Pathology wards of Firoozgar teaching hospital. We also acknowledge the contribution of Shahin Pourazar Dizagi. Acceptance Ethical Number: IR.IUMS.REC.1394.656

Conflict of interests

The authors declare no conflicts of interest.

Financial disclosure

This work was supported by the Research Center of Iran University of Medical Sciences.

References

Helicobacter pylori gamma glutamyl transpeptidase and vaculating cytotoxin promote gastric persistence and immune tolerance. Proc Natl Acad Sci USA 2013; **110**: 3047-52.


