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ARTICLE  INFO  ABSTRACT 

Article type: 

Original Article 

Background:   The genus Bordetella harbors 16 species; three of them are well-known for their high 
medical importance. The phylogenetic diversity of the genus is currently not very well investigated. 
Methods:    In this study, 16S rRNA gene sequence of 16 type strains of the Bordetella species were 
analyzed. Also, phylogenies conducted on the same gene of 247 isolates of Bordetella species, 
comprising a wide physiological as well as ecological diversity and encompassing ex-type 
representatives of the 16 Bordetella species, were analyzed.    
Results:   It was found that the phylogenetic diversity of the genus may be very different from that is 
currently assumed. Interestingly, the 16S rRNA gene signals could not resolve some species with 
promising bootstrap and posterior probability values as our phylogenies, using maximum likelihood 
and Bayesian inference methods, showed.  
Conclusion:   Our results indicate a probable need for additional phylogenetic signals which can be 
provided by coding genes. Therefore, sequence data of ompA gene of Bordetella species, a critically 
significant genomic region in pathogenesis, was here analyzed, phylogenetically. This gene confirmed 
the tree topology and the phylogenetic species boundaries already revealed by the 16S rRNA gene, but 
showed a better discriminatory power which resolved Bordetella species with higher statistically 
significant values. 
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   Introduction 

 

There is a considerable number of opportunistic 

bacterial pathogens in various environmental 

samples including soils and feces (1, 2).  Various 

soils are known as the origin of various non-

pathogenic and either pathogenic microbial 

species. Thus, various species of opportunistic 

bacterial pathogens, likely Enterobacteriaceae (3), 

Microbacterium (4), Pseudomonas (5), 

Stenotrophomonas (6), and many other genera of 

the kingdom Eubacteria can be detected in various 

soils, abundantly.  

   The genus Bordetella includes 16 well-known 

species among which three species: B. pertussis, B. 

parapertussis, and B. bronchiseptica, have a very 

higher biomedical importance (7, 8). According to 

the previously published reports, Bordetella 

species have been mainly found as pathogens, but 

also various environmental samples; soil, water, 

and air are regarded as their habitats (7, 8). Recent 

findings suggest soil as a probable environmental 

origin of Bordetella species, including the animal-

pathogenic lineages (7-9). The significant 

abundance of pathogenic Bordetella species in 

soils explains their wide distribution as well as 

frequent disease outbreaks that start without an 

obvious infectious source (9, 10). 

   B. pertussis is a strict human pathogen causing 

the respiratory tract infection called whooping 

cough (9). B. parapertussis consists of two 

lineages, one infecting human and the other 

infecting sheep (10). In contrast to these single host 

adapted pathogens, B. bronchiseptica: a close 

species to the two above species can cause a broad 

array of respiratory diseases (11, 12). B. trematum 

is a nonpathogenic, opportunistic organism whose 

sole source of isolation is thought to be open 

wounds of humans (13). In place, B. trematum 

causes ear and wound infections (14). A selective 

microbe-host association between B. trematum and 

B. holmesii species, and humans seems probable 

since these two Bordetella species have been 

exclusively detected as human pathogens (14). B. 

holmesii has been found repeatedly in blood and 

often in sputum of adolescents and is an emerging 

cause of septic arthritis (15-17). B. avium, a 

pathogen of birds, causes coryza or rhinotracheitis 

in poultry, but it has never been found in humans. 

B. petrii, causes sinusitis in immunocompromised 

adolescents, has been isolated from environmental 

samples and is capable of anaerobic growth (8, 18). 

B. hinzii, mainly colonizes the respiratory tract of 

poultry, has been also found as a chronic 

cholangitis infection agent in 

immunocompromised humans (19) and was 

recently reported as a causative agent of fatal 

septicemia (20). Since B. hinzii has been isolated 

from trachea and lungs of laboratory mice with 

respiratory infection and wild rodents, it is 

assumed that these animals may serve as reservoir 

for this species that could be transmitted to human 

or pets (19, 20). B. hinzii should be added to the list 

of emerging bacterial zoonotic agents in wild 

rodents that could be pathogenic for humans, 

especially immunocompromised patients (20, 21). 

B. pseudohinzii; a close species to B. hinzii, is also 

detected as a rodent-associated Bordetella species 

(19-22).  B. bronchialis, B. flabilis, and B. 

sputigena (23, 24) are recently introduced and they 

have been isolated from human respiratory 

specimens. In contrast to other bordetellae, B. 

trematum (21) and B. ansorpii (22) are not 

associated with respiratory problems but are 

isolated from human wound infections. 

   Species delimitation seems to be difficult dealing 

with bordetellae. B. hinzii is highly difficult to 

become differentiated from B. pseudohinzii and 

even B. avium by routine phenotypic methods. 

Similarly, miss-identification is highly probable 

differentiating B. parapertussis, B. pertussis and B. 

bronchiseptica (24, 25). Sequence-based 

identification and phylogeny tend to be a 

promising approach to resolve the species 

boundaries (26). 

   Considering the increasing rate of the researches 

performed on various bacterial species to fulfill 

sequence-based identifications, the phylogenetic 

species boundaries have become faint. Thus, a 

single genomic locus may become exhausted from 

the needed signals to resolve very close species 

Confirmation can be reliably achieved using 
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advanced genotypic and phylogenetic methods 

(24, 27), and the greater nucleotide variation of the 

conserved protein coding genes allows 

unequivocal identification of very close Bordetella 

species. Thus, in this study we performed a 

preliminary research on the applicability of OmpA 

gene sequence, encoding a porin-like protein 

which has a critical role in pathogenesis, in 

phylogeny and identification of Bordetella species. 

 

Materials and Methods 

 

   The 16S rRNA gene reference sequences and 

either the same gene sequences from isolates and 

uncultured materials obtained from Ribosomal 

Database Project (27, 28). Also, ompA gene 

sequences obtained from the nucleotide database 

of GenBank, NCBI. Thus, three different datasets 

(two datasets for 16S rRNA gene and a dataset for 

the nucleotide sequence of the coding gene for 

ompA) were prepared, separately. 

   The datasets were aligned with the multiple 

sequence alignment tool; Multiple sequence 

Alignment using Fast Fourier Transform 

(MAFFT), available at the European 

Bioinformatics Institute (EMBL-EBI), separately 

(29-35). Alignments were manually improved in 

MEGA v. 7.0.9 and Bioedit v. 7.0.5.3 packages 

(default settings) (36, 37). Maximum likelihood 

and Bayesian analyses were conducted using 

separated or concatenated datasets. The online tool 

Findmodel (http://www.hiv.lanl.gov/content/ 

sequence/findmodel/ findmodel.html) was used to 

determine the best nucleotide substitution model 

for each partition. Bayesian inference (BI) analysis 

was conducted for each dataset, separately. 

Bayesian analyses were conducted with MrBayes 

v3.2.1 (38) executed on XSEDE (Extreme Science 

and Engineering Discovery Environment) through 

the CIPRES Science Gateway v. 3.3 (39) in two 

parallel runs, using the default settings but with the 

following modifications: general time reversible 

(GTR) model of DNA substitution as the best fit 

and a gamma distribution rate variation across sites 

(29). This model was chosen as the result from a 

pretest with MrModeltest v. 2.2 (40). After this 

was determined, the GTR + I + G model, as the 

best nucleotide substitution model, was used for 

the combined dataset, and a MCMC heated chain 

was set with a temperature value of 0.05. The 

number of chains, number of generations, and 

sample frequencies were set, respectively, at 4, 

20000000 or 50000000, and 1000. Chain 

convergence was determined using Tracer v. 1.5 

(http://tree.bio.ed.ac.uk/ software/tracer/) to 

confirm sufficiently large ESS values (>200). The 

sampled trees were subsequently summarized after 

omitting the first 25 % of trees as burn-in using the 

“sump” and “sumt” commands implemented in 

MrBayes (41, 42). The tree was visualized and 

edited using FigTree v. 1.4.2 (43, 32). 

 

Results 

   Sequence dataset of the 16S rRNA gene which 

was provided by RDP database contained 

sequences of type strains, isolates and uncultured 

sequence data. The sequence data of this gene was 

screened and split into three separate alignments; 

type strains, isolates and uncultured sequence. 

Besides, sequence dataset of ompA gene was 

produced using the similarity search engines of 

BLAST program available at NCBI. The tree 

topology for the three separate alignments of the 

16S rRNA gene was the same. Thus, the 16S rRNA 

gene alignments of the type strains and isolates 

were fused and used for further analyses (Fig. 1). 

Also, to infer the familial placement of the genus 

Bordetella, 16S rRNA gene sequences for the type 

strains of the genus Bordetella were analyzed in an 

alignment which contained the reference 

sequences for the genera of Alcaligenaceae and 

allied families.     
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Figure 1.       The Bayesian inference phylogeny of the members of the genus Bordetella based on the 16S rRNA 

gene sequence data. Bayesian posterior probabilities above 0.75 resulting from 50,000,000 replicates are given at 

the nodes. The GenBank accessions are given after the species names. Species are differentiated with alternative 

colours (putative undescribed species are not highlighted). Type strains of the described Bordetella species are 

shown in bold. The tree is rooted to Alcaligenes fecalis. 
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Figure 2.        The Bayesian inference phylogeny of the genus Bordetella based on the 16S rRNA gene sequence 

data of type strains. Bayesian posterior probabilities above 0.75 resulting from 20,000,000 replicates are given at 

the nodes. The GenBank accessions are given after the species names. The genera Bordetella and Achromobacter 

are differentiated with alternative colours. The tree is rooted to Derxia gummosa. 
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Figure 3.         The Bayesian inference phylogeny of the members of the genus Bordetella based on the sequence 

data of the coding gene for ompA. Bayesian posterior probabilities above 0.75 resulting from 20,000,000 replicates 

are given at the nodes. The GenBank accessions are given after the species names. Species are differentiated with 

alternative colours. The tree is rooted to Achromobacter insolitus (DSM 23807). 
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 Genome 

assemblies 

 

Median 

total length 

(Mb) 

Median 

protein count 

Median GC 

content (%) 

B. bronchiseptica 68 5.19 4759 68.2 

B. parapertussis 4 4.78 4162 68.1 

B. pertussis 613 4.05 3576 67.7 

B. holmesii 21 3.61 3139 62.7 

B. hinzii 10 4.89 4456 67 

B. petrii 3 5.04 4718 65.5 

B. avium 2 3.71 3262 61.6 

B. pseudohinzii 4 4.53 4124 66.6 

B. trematum 5 4.44 3985 65.7 

B. ansorpii 2 6.17 5357 66.8 

B. flabilis 2 5.95 5238 65.9 

B. bronchialis 2 5.92 5144 67.3 

 

an intraspecies diversity can also be observed in B. 

petrii clade (Fig. 1). 

   Phylogenies performed on the coding gene for 

ompA confirmed the efficient variability of the 

nucleotide sequence of this gene which resolve 

all Bordetella species as very well supported 

clades (Fig. 3). Moreover, the tree topology of 

ompA based phylogenies was conforming to that 

of 16S rRNA gene. 

   Abundance of the sequence data of these two 

genes of Bordetella species in the nucleotide 

database of GenBank, NCBI is not comparable. 

In fact, there were only 83 (62 sequences from 

B. pertussis and 21 sequences from other 

Bordetella species) nucleotide sequences of the 

coding gene for ompA belonging to Bordetella 

species. In comparison, there were 247 16S 

rRNA sequences from Bordetella species which 

were analyzed in our phylogenies (Fig. 1). 

   16S rRNA based phylogeny showed that there 

are still some clades in Bordetella which seem 

to be putative undescribed species. However, 

ompA didn’t show further data on the diversity 

and boundaries of the genus which is highly 

associated with the under-sampling of the 

nucleotide sequences of this gene (Fig. 3). 

 

 

Discussion 

   Analyzing the 16S rRNA gene alignment, it was 

found that this gene, as the main gene in phylogeny 

purposes in prokaryotes, has some limitations to 

resolve Bordetella species. This weak point of the 

16S rRNA gene is very well highlighted in figure. 

1, where two of the three most important medical 

species: B. bronchiseptica and B. parapertussis 

were not resolved.  

   Our results show that the Bordetella species have 

been mostly detected in soil, water, sediment, and 

even associated to some plants, worldwide. 

Further, considering Fig. 1, it is shown that 

human/animal-associated Bordetella species 

scatter in the phylogenetic tree of the genus and it 

is contrary to the results of Soumana et al. (44). 

Furthermore, phylogenies conducted in this study 

indicated that the Bordetella species with in some 

basal positions to the rest of the genus (B. 

bronchialis, B. flabilis, B. sputigena) have been 

exclusively detected in human respiratory 

specimens (24). Thus, the conclusion that the basal 

clades harbor species with environmental origins is 

still discussed and it may be in contrary to 

conclusion of Soumana et al. (2017) (44). 

According to the data summarized in table 1, the 

above mentioned species have larger genomes 

comparing to the rest of the genus. Of course, 

Table 1.        Genomics data of some Bordetella species available in the genome database of GenBank, NCBI.   
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phylogenies conducted in this study are 

conforming to those of Vandamme et al. (2015) as 

these three species have a different node from the 

other Bordetella species (23). Thus, more 

taxonomic revisions seems plausible. According to 

the recent 16S rRNA-based phylogenies, it was 

assumed that Bordetella species with 

environmental origins tend to have basal 

placements in comparison to human/animal-

associated species (44), but the gigantic 

phylogenies performed here and the results of 

Vandamme et al. (2015) does not show such a 

relationship between the origin of the Bordetella 

species/isolates and their evolutionary placements 

(23). Also, our phylogenies showed that there are 

a considerably higher genetic diversity in the basal 

taxa of the phylogenetic tree of Bordetella which 

is conforming to the results of Soumana et al. (44). 

However, considering the documented genome 

decay rates in Bordetella species, an evolutionary 

link between species with a free-living 

environmental lifestyle and the species with a host-

restricted obligately pathogenic lifestyle is 

probable.  

 

Conclusion 

 

   As a conclusion, considering the analyses 

performed on the nucleotide sequences of the 

coding gene for ompA a higher resolution 

achieved for Bordetella species. Also, due to the 

same topologies observed for 16S rRNA and 

ompA genes it is concluded that using coding 

genes; likely ompA, can result more resolutions in 

Bordetella phylogenies which differentiate very 

close species unequivocally. 
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