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Background:   The syndemic of the human immunodeficiency virus and Streptococcus pneumoniae 
infections remains a significant global health challenge. Despite effective antiretroviral therapy, 
people living with the human immunodeficiency virus face a 20- to 100-fold higher risk of invasive 
pneumococcal disease due to persistent, multifaceted immunodeficiency affecting both innate and 
adaptive immunity. This includes dysfunction of alveolar macrophages and neutrophils, compromised 
mucosal barriers, depletion of CD4+ T-cells particularly T-follicular helper cells and B-cell 
dysregulation, creating a perfect storm for invasive infection. The evolution from polysaccharide to 
conjugate vaccines represents a major advancement. Pneumococcal conjugate vaccines, by enabling 
T-cell-dependent responses, generate higher-quality antibodies, robust memory B-cells, and 
demonstrate superior immunogenicity and effectiveness in people living with the human 
immunodeficiency virus compared to the 23-valent pneumococcal polysaccharide vaccine. Evidence 
from immunogenicity studies, observational data, and the herd effects from childhood pneumococcal 
conjugate vaccines programs confirms that pneumococcal conjugate vaccines significantly reduce 
vaccine-type pneumococcal disease. However, challenges like serotype replacement, waning 
immunity, suboptimal response despite antiretroviral therapy, and the aging of the people living the 
human immunodeficiency virus population impede optimal protection. 
Conclusion:   While conjugate vaccines have transformed prevention, durable protection against 

pneumococcal disease in people living with the human immunodeficiency virus remains an unfinished 

agenda. Future success hinges on developing novel vaccines (e.g., protein-based), optimizing 

strategies with adjuvants and boosters, defining correlates of protection, and ensuring global equity 

in vaccine access. A multifaceted approach combining research, clinical innovation, and public health 

policy is essential to significantly reduce this burden. 
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   Introduction 

 

   The intersection of the human 

immunodeficiency virus (HIV) pandemic and 

infections caused by Streptococcus pneumoniae 

represents a significant and persistent syndemic 

challenge to global public health, particularly in 

regions with high HIV prevalence and limited 

access to healthcare resources (1). HIV infection 

causes progressive depletion and functional 

impairment of CD4+ T lymphocytes, coupled with 

chronic immune activation and dysregulation of B-

cell function, leading to a state of profound and 

multifaceted immunodeficiency (2). This 

immunocompromised state dramatically increases 

susceptibility to a wide range of opportunistic 

infections, with pneumococcal disease being one 

of the most common and severe bacterial 

complications, contributing substantially to 

morbidity and mortality among people living with 

HIV (PLWH) (3, 4). 

   The burden of invasive pneumococcal disease 

(IPD) is disproportionately high among PLWH. 

Even in the era of effective antiretroviral therapy 

(ART), which has successfully restored CD4+ 

counts and reduced the incidence of many 

opportunistic infections, the risk of IPD (e.g., 

pneumonia, bacteremia, and meningitis) remains 

20- to 100-fold higher in PLWH compared to the 

general population (5, 6). This persistent 

vulnerability underscores the complex nature of 

HIV-associated immune dysfunction, which 

extends beyond mere CD4+ depletion. ART does 

not fully normalize immune function; residual 

defects in neutrophil activity, macrophage 

phagocytosis, memory B-cell maturation, and 

polysaccharide-specific antibody responses create 

a permissive environment for pneumococcal 

colonization and invasion (7). Furthermore, 

chronic inflammation and microbial translocation 

associated with HIV may damage the respiratory 

epithelium, facilitating bacterial adhesion and 

dissemination (8). 

   Vaccination has emerged as a cornerstone 

strategy to mitigate this excess risk. The evolution 

from the 23-valent pneumococcal polysaccharide 

vaccine (PPSV23) to more immunogenic 

pneumococcal conjugate vaccines (PCVs) 

represents a major advancement in preventive care 

for PLWH (9, 10). Pure polysaccharide vaccines 

like PPSV23, which elicit a T-cell-independent 

response, often result in short-lived immunity with 

poor immunological memory and are less effective 

in immunocompromised individuals who lack 

robust B-cell function (11). In contrast, conjugate 

vaccines, by coupling capsular polysaccharides to 

a protein carrier (e.g., CRM197), effectively 

recruit T-cell help. This T-cell-dependent response 

induces isotype switching, generates high-affinity 

antibodies, and establishes long-lasting memory B 

cells—precisely the responses that are often 

deficient in PLWH (12, 13). 

   The introduction of higher-valent conjugate 

vaccines (PCV15 and PCV20) has further 

expanded serotype coverage, offering protection 

against a broader range of clinically significant 

strains. However, critical challenges remain, 

including the emergence of non-vaccine serotypes 

(NVTs) due to serotype replacement, the optimal 

timing of vaccination in relation to ART initiation 

to maximize immunogenicity, and the potential 

need for booster doses to sustain protection (14, 

15). 

   This review aims to synthesize current 

knowledge on the epidemiology and 

immunological pathogenesis of pneumococcal 

disease in the context of HIV infection. 

Furthermore, it will critically evaluate the clinical 

evidence for the efficacy and effectiveness of both 

polysaccharide and conjugate pneumococcal 

vaccines in this high-risk population. It will 

discuss the molecular mechanisms underpinning 

vaccine-induced protection, address the ongoing 

challenges in achieving optimal and durable 

immunity, and to explore future directions for 

research and public health policy to reduce the 

burden of pneumococcal disease in the global HIV 

syndemic. 
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Unraveling the Weak Links: Immunopathogenesis 

of Pneumococcal Disease in HIV 

 

   The heightened susceptibility to S. pneumoniae 

in people living with HIV (PLWH) stems from a 

profound and multi-layered erosion of the body's 

defenses, compromising both the immediate innate 

response and the more specialized adaptive 

immunity (16). 

   Innate immune dysfunction represents the first 

critical failure. HIV infection severely disrupts the 

first line of defense in the lungs. Alveolar 

macrophages, which are paramount for engulfing 

and destroying pneumococci, display a markedly 

reduced phagocytic and bactericidal ability. This 

dysfunction is a direct consequence of HIV-

induced chronic activation and alteration of their 

normal state (17). Furthermore, neutrophil activity 

is significantly impaired, with documented 

deficiencies in its ability to migrate toward 

infection sites (chemotaxis), consume pathogens 

(phagocytosis), and form neutrophil extracellular 

traps (NETs) to ensnare bacteria, even in 

individuals on antiretroviral therapy (18). 

Compounding these cellular deficits, the physical 

integrity of the respiratory epithelial barrier is 

weakened. The relentless state of HIV-associated 

inflammation and immune activation damages the 

mucosal lining, which facilitates the adherence of 

bacteria and their subsequent translocation into the 

bloodstream, setting the stage for invasive disease 

(19). 

   The dysfunction extends catastrophically to the 

adaptive arm of the immune system, culminating 

in adaptive immune failure. The defining depletion 

of CD4+ T-cells, with a particularly devastating 

impact on T-follicular helper (Tfh) cells residing in 

germinal centers, cripples the generation of a 

targeted antibody response (20). These Tfh cells 

are indispensable, as they provide the necessary 

signals for B cells to undergo critical processes: 

class-switch recombination (to produce more 

effective antibody types), somatic hypermutation 

(to refine antibody affinity), and ultimate 

differentiation into either memory B cells or 

antibody-secreting plasma cells (21). The absence 

of this robust T-cell help renders the immune 

response to T-cell-independent antigens, such as 

the polysaccharide capsule that encapsulates S. 

pneumoniae, profoundly weak and transient (22). 

   This is exacerbated by a state of general B-cell 

dysregulation caused by HIV (23). The B-cell 

compartment exists in a paradox of chronic 

hyperactivation, leading to elevated levels of non-

specific antibodies (hypergammaglobulinemia), 

but this occurs at the expense of targeted efficacy 

(24). This hyperactivation leads to B-cell 

exhaustion and an impaired ability to mount strong 

responses to new, specific antigens. Consequently, 

PLWH often exhibit reduced reservoirs of naïve B 

cells and a paucity of memory B cells specifically 

tuned to polysaccharide antigens (25). This results 

in inadequate antibody titers against pneumococci 

and feeble recall responses upon encounter, which 

directly explains the limited clinical efficacy 

observed with pure polysaccharide vaccines in this 

population (26). 

   In essence, this cumulative immunodeficiency 

creates a perfect storm for invasive pneumococcal 

disease: the initial clearance by innate immune 

cells is sluggish, the physical mucosal barriers are 

breached, and the system fails to generate high-

affinity, pathogen-specific antibodies and long-

lasting memory responses. This sequential failure 

allows S. pneumoniae to easily transition from a 

state of harmless colonization in the nasopharynx 

to a life-threatening invasive infection (27). 

 

From Polysaccharides to Conjugates: A 

Revolution in Vaccine Strategy 

 

   The development of pneumococcal vaccines for 

people living with HIV (PLWH) represents a 

crucial journey of overcoming immunological 

limitations through innovative vaccine design, 

marking a significant evolution from 

polysaccharide-based to conjugate vaccine 

platforms (28). 

   The limitations of polysaccharide vaccines 

present a fundamental challenge in 
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immunocompromised hosts (29). The 23-valent 

pneumococcal polysaccharide vaccine (PPSV23), 

while covering a broad spectrum of serotypes, 

suffers from a critical immunological flaw in the 

context of HIV infection due to its T-cell-

independent mechanism of action (30). This 

vaccine directly stimulates B cells without 

engaging T-cell help, resulting in several key 

shortcomings: rapid decay of antibody levels 

typically within 3-5 years, absence of a robust 

booster response upon revaccination (a 

phenomenon known as hyporesponsiveness), and 

failure to generate long-term immunological 

memory (31). Meta-analyses have consistently 

demonstrated that while PPSV23 shows 

effectiveness in reducing invasive pneumococcal 

disease in the general population, its efficacy in 

PLWH remains modest at best, highly variable, 

and ultimately provides unreliable protection for 

this vulnerable population (32). 

   In contrast, the advent of conjugate vaccines 

represents a paradigm shift in vaccine strategy. 

Pneumococcal conjugate vaccines (PCVs) achieve 

their superior immunogenicity through covalent 

linking of capsular polysaccharides to an 

immunogenic protein carrier, such as CRM197, 

diphtheria toxoid, or tetanus toxoid (33). This 

design fundamentally converts the immune 

response from T-independent to T-dependent, 

enabling several crucial immunological 

advantages that directly address the deficits seen in 

PLWH. The conjugate design allows for effective 

engagement of CD4+ T-cells, as the protein carrier 

is processed and presented by antigen-presenting 

cells, activating T-cells that subsequently provide 

essential help to antigen-specific B cells (34). This 

T-cell help drives the formation of long-lived 

memory B cells and plasma cells, enabling rapid 

and potent anamnestic responses upon future 

pathogen exposure (35). Furthermore, the response 

is characterized by isotype switching to IgG1 and 

IgG3, affinity maturation, and production of 

mucosal IgA—all features essential for effective 

opsonophagocytosis and neutralization of 

pneumococci (36). 

   The strategic approach of sequential vaccination 

has been explored to leverage the respective 

advantages of both vaccine types. The prime-boost 

strategy, involving initial vaccination with a 

conjugate vaccine followed by administration of a 

polysaccharide vaccine, aims to combine the 

superior memory induction of PCVs with the 

broader serotype coverage of PPSV23(37). 

However, evidence supporting the superior 

effectiveness of this approach compared to PCV 

vaccination alone remains limited and continues to 

evolve, particularly in the context of HIV-

associated immunodeficiency (38). 

 

Clinical Evidence: Evaluating Vaccine Efficacy 

and Effectiveness in PLWH 

 

   Numerous clinical studies have evaluated the 

real-world impact of PCVs on PLWH, with 

evidence supporting their use stemming from 

immunogenicity trials, direct effectiveness studies, 

and observations of indirect herd effects (39). The 

key findings from these studies are summarized in 

Table 1. 

   Immunogenicity Studies form the foundational 

evidence. Consistently, clinical trials have 

demonstrated that PCVs are significantly more 

immunogenic than PPSV23 in PLWH. 

Vaccination with PCV (e.g., PCV7, PCV13) 

results in higher geometric mean concentrations 

(GMCs) of serotype-specific IgG antibodies and 

higher opsonophagocytic activity (OPA) titers, a 

functional correlate of protection (40, 41). A 

critical finding is that the timing of vaccination 

matters profoundly; administering PCV after ART 

initiation and after some degree of immune 

reconstitution (e.g., CD4+ >200 cells/μL) yields a 

superior antibody response compared to 

vaccinating in the setting of severe 

immunodeficiency (42). 

   The introduction of PCVs into childhood 

immunization programs has had a dramatic 

Indirect (Herd) Effectiveness on IPD incidence in 

PLWH. By reducing nasopharyngeal carriage of 

vaccine-type pneumococci in vaccinated children, 
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transmission to susceptible adults, including 

PLWH, is drastically reduced (43). This has led to 

significant declines in vaccine-type IPD among 

PLWH in countries with mature pediatric PCV 

programs, even before adult recommendations 

were widespread (44). However, this herd effect 

also underscores a critical challenge, serotype 

replacement (44). As vaccine-type carriage 

decreases, non-vaccine serotypes (NVTs) have 

expanded to fill the ecological niche (45). 

Consequently, PLWH remain vulnerable to IPD 

caused by these NVTs, a persistent limitation that 

highlights the need for broader-valency vaccines 

and continued surveillance (46). 

   Regarding Direct Effectiveness against Clinical 

Outcomes, while randomized controlled trials 

(RCTs) powered to directly measure efficacy 

against IPD are ethically challenging in the ART 

era, large observational cohort and case-control 

studies have provided compelling real-world 

evidence (47). These studies consistently show that 

PCV vaccination is associated with a significant 

reduction in the risk of all-cause pneumonia and 

confirmed IPD among PLWH, confirming that the 

robust immunogenicity translates into meaningful 

clinical protection (47, 48). 

 

Ongoing Challenges in Achieving Optimal 

Protection 

 

   Despite the clear benefits of conjugate vaccines, 

several significant challenges impede the goal of 

achieving optimal and durable protection against 

pneumococcal disease in people living with HIV 

(49). 

   The timing of vaccination presents a complex 

clinical dilemma (50). The immunogenicity of 

pneumococcal conjugate vaccines is strongly 

influenced by the degree of immune reconstitution 

achieved with antiretroviral therapy (51). 

Vaccinating individuals with low CD4+ counts 

often results in blunted antibody responses and 

suboptimal protection (52). While current 

guidelines recommend vaccination after ART 

initiation, the precise optimal window balancing 

the need for early protection with achieving 

maximum immunogenicity remains an active area 

of investigation (53). Determining the exact point 

at which immune recovery is sufficient to mount a 

robust vaccine response while minimizing the 

period of vulnerability represents a critical 

challenge in clinical management (54). 

   Waning immunity and the potential need for 

booster doses constitutes another significant hurdle 

(55). Despite the superior memory response 

induced by PCVs compared to polysaccharide 

vaccines, studies consistently demonstrate that 

antibody levels in PLWH decline more rapidly 

than in immunocompetent hosts (56). This 

observation has sparked considerable debate 

regarding the potential need for and timing of 

booster vaccinations (57). The question of whether 

to revaccinate with another dose of PCV or switch 

to PPSV23 for broader serotype coverage lacks a 

definitive evidence-based answer, leading to 

variations in national guidelines and clinical 

practice (58). The optimal interval for 

revaccination and the most effective booster 

strategy remain important unanswered questions in 

the field (59). 

   Serotype replacement and non-vaccine serotypes 

represent an evolving challenge in pneumococcal 

prevention (60). The remarkable success of PCVs 

in reducing vaccine-type carriage and disease has 

led to the emergence of non-vaccine serotypes that 

now cause a growing proportion of invasive 

pneumococcal disease cases in PLWH (61). This 

ecological phenomenon necessitates the 

continuous development of higher-valency 

vaccines and underscores the limitation that 

current vaccines do not provide universal 

protection against all pneumococcal serotypes 

(62). The dynamic nature of serotype distribution 

requires ongoing surveillance and vaccine 

development efforts to address this evolving threat 

(63). 
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Type of 

Evidence 

Study Design and Findings  Key Implications for PLWH 
 

Immunogenicity Randomized Controlled Trials (RCTs): Consistently show PCV induces 

higher Geometric Mean Concentrations (GMCs) of serotype-specific IgG 

and higher Opsonophagocytic Activity (OPA) titers compared to 

PPSV23.  

Finding: Optimal response when vaccinated after ART initiation and 

immune reconstitution (e.g., CD4+ >200 cells/μL) (40, 41, 42). 

Demonstrates PCV's ability to 

generate a functional immune 

response despite 

immunodeficiency. Timing with 

ART is crucial for maximizing 

immunogenicity. 

Indirect (Herd) 

Effectiveness 

Observational Surveillance Studies: Document a significant decline in 

vaccine-type IPD among PLWH following the introduction of pediatric 

PCV immunization programs.  

Finding: Reduction in IPD incidence in unvaccinated adults due to 

reduced transmission from vaccinated children (43, 44). 

Highlights the critical public health 

value of childhood PCV programs 

in protecting immunocompromised 

adult populations like PLWH. 

Direct 

Effectiveness 

against Clinical 

Outcomes 

Cohort & Case-Control Studies: Show PCV vaccination is associated 

with a significant reduction in the risk of all-cause pneumonia and 

confirmed IPD.  

Finding: Direct RCTs are limited, but real-world evidence confirms a 

protective benefit (48, 49). 

Provides robust evidence that the 

improved immunogenicity of PCV 

translates into meaningful clinical 

protection against disease. 

Limitation: 

Serotype 

Replacement 

Population-level Surveillance: Monitoring shows a decrease in vaccine-

type carriage and disease but a concomitant increase in colonization and 

IPD caused by Non-Vaccine Serotypes (NVTs) (45). 

Underscores that current PCVs are 

not universal solutions. PLWH 

remain at risk from NVTs, driving 

the need for higher-valency 

vaccines (PCV15, PCV20). 

 

   The aging population of PLWH introduces 

additional complexities through 

immunosenescence and comorbidities (64). As 

antiretroviral therapy has transformed HIV into a 

chronic condition, the population of people living 

with HIV is experiencing natural aging processes 

(65). The combined effect of HIV-associated 

immune dysfunction and age-related 

immunosenescence may further increase 

susceptibility to pneumococcal disease and 

diminish vaccine responses (66). This dual 

immune compromise creates a unique 

immunological environment that requires focused 

study and potentially tailored vaccination 

strategies for older adults living with HIV (67). 

 

 

 

 

Future Directions for Research and Public Health 

Policy 

 

   Addressing the persistent challenges in 

pneumococcal protection for people living with 

HIV requires a comprehensive and multi-faceted 

approach that spans basic science investigation, 

clinical research advancement, and public health 

implementation strategies (68). 

   The development of novel vaccine strategies 

represents a promising frontier in overcoming 

current limitations (69). Research efforts are 

increasingly focused on protein-based vaccines 

targeting highly conserved pneumococcal proteins 

such as pneumolysin and pneumococcal surface 

protein A (PspA) (70). These next-generation 

vaccines offer the potential for serotype-

independent protection, which could 

fundamentally overcome the challenge of serotype 

replacement and provide broader protection 

Table 1.   Summary of clinical evidence for pneumococcal conjugate vaccine (PCV) in people 

living with HIV (PLWH). 
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against diverse pneumococcal strains (71). By 

targeting antigens common across multiple 

serotypes, these vaccines may provide more 

universal protection that is not limited by the 

changing epidemiology of circulating strains (72). 

   Advancements in adjuvant technology and 

vaccine formulations present another critical 

research direction (73). The investigation of novel 

adjuvants in combination with existing conjugate 

vaccines offers significant potential for enhancing 

the magnitude, breadth, and durability of immune 

responses in immunocompromised populations 

(74). Specifically designed adjuvants could help 

overcome the particular immune deficits seen in 

PLWH, potentially mitigating the issue of waning 

immunity and reducing the need for frequent 

booster doses (75). The development of tailored 

formulations that optimize immune responses in 

the context of HIV-related immune dysfunction 

represents an important area of translational 

research (74, 75). 

   Establishing precise correlates of protection 

remains an essential prerequisite for evaluating 

new interventions (76). While opsonophagocytic 

activity is generally accepted as a correlate of 

protection in immunocompetent populations, its 

precise protective thresholds and clinical relevance 

in PLWH require further elucidation (77). 

Defining population-specific immunological 

correlates that accurately predict clinical 

protection would significantly accelerate vaccine 

development and evaluation (78). Such correlates 

would enable more efficient assessment of new 

vaccine candidates and vaccination strategies 

without requiring large-scale clinical endpoint 

studies (79). 

   Implementation science and global access 

initiatives constitute the crucial bridge between 

scientific advancement and public health impact 

(80). From a policy perspective, improving 

vaccine uptake requires integrating pneumococcal 

vaccination into routine HIV care packages and 

developing effective reminder systems (81). 

Importantly, ensuring equitable access to the latest 

conjugate vaccines in low- and middle-income 

countries represents an ethical imperative and 

practical necessity. Addressing barriers to vaccine 

access, distribution, and administration in 

resource-limited settings is essential for achieving 

meaningful reductions in global pneumococcal 

disease burden among PLWH ((82, 83). 

 

Conclusion 

 

   As a conclusion the future of pneumococcal 

prevention lies in the development of broader-

spectrum vaccines, boosters and adjuvants, and an 

unwavering commitment to global health equity. 

Through a concerte effort combining basic 

research and clinical innovation, the goal of 

reducing the burden of pneumococcal disease 

among people with HIV is an achievable 

imperative. 
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