Detection of Pseudomonas aeruginosa Producing Metallo β-Lactamases (VIM, SME, AIM) in the Clinical Isolates of Intensive Care Units of Al-Zahra Hospital in Isfahan, Iran
Abstract
Background: Pseudomonas aeruginosa is a severe challenge for antimicrobial therapy, because of chromosomal mutations or exhibition of intrinsic resistance to various antimicrobial agents such as most β-lactams. We undertook this study to evaluate the existence of SME, AIM and VIM metallo-beta lactamases encoding genes among P. aeruginosa strains isolated from ICU patients in AL-Zahra Hospital in Isfahan, Iran.
Methods: In a retrospective cross sectional study that was conducted between March 2012 to April 2013, in total 48 strains of P. aeruginosa were collected from clinical specimens of bedridden patients in ICU wards. Susceptibility test was performed by disc diffusion method. All of the meropenem resistant strains were subjected to modified Hodge test (MHT) for detection of carbapenemases. Multiplex PCR was performed for detection of VIM, blaAIM, blaSME genes.
Results: In disk diffusion method imipenem and meropenem showed the most and colistin the least resistant antimicrobial agents against P. aeruginosa strains. Of the 48 isolates 36, (75%) were multidrug resistant. Amplification of β-lactamase genes showed the presence of blaVIM genes in 7 (%14.6) strains. All of the isolates were negative for blaSME and blaAIM genes. We couldn’t find any statistically significance difference among presence of this gene and MDR positive, age or source of the specimen.
Conclusion: As patients with infections caused by MBL-producing bacteria are at an intensified risk of treatment failure, fast determination of these organisms is necessary. Our findings may provide useful insights in replace of the appropriate antibiotics and may also prevent MBLs mediated resistance problem.
Wolter DJ, Khalaf N, Robledo IE, et al. Surveillance of Carbapenem-Resistant Pseudomonas aeruginosa Isolates from Puerto Rican Medical Center Hospitals: Dissemination of KPC and IMP-18 β-Lactamases. Antimicrob Agents Chemother 2009; 53(4): 1660-1664.
M, Ramazani A and Garshasbi M. Identification and Characterization of Metallo-β-Lactamases Producing Pseudomonas aeruginosa Clinical Isolates in University Hospital from Zanjan Province, Iran. Iran Biomed J 2013; 17(3): 129-133.
L, Poirel L, and Nordmann P. Rapid Detection of Carbapenemase-producing Pseudomonas spp. J Clin Microbiol 2012; 50(11): 3773–3776.
Lin KY, Lauderdale TL, Wang JT, et al. Carbapenem-resistant Pseudomonas aeruginosa in Taiwan: Prevalence, risk factors, and impact on outcome of infections. J Microbiol Immunol Infect 2014; 14: 1684-1182.
Mataseje LF, Bryce E, Roscoe D, et al. Carbapenem-resistant Gram-negative bacilli in Canada 2009-10: results from the Canadian Nosocomial Infection Surveillance Program (CNISP). J Antimicrob Chemother 2012; 67(6): 1359-67.
Baumgart AM, Molinari MA, Silveira AC. Prevalence of carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii in high complexity hospital. Braz J Infect Dis 2010; 14(5): 433-6.
Dortet L, Boulanger A, Poirel L, et al. Bloodstream infections caused by Pseudomonas spp.: how to detect carbapenemase producers directly from blood cultures. J Clin Microbiol 2014; 52(4): 1269-73.
H, Karimi Z, Owlia P, et al. Phenotypic detection of Metallo-beta-Lactamase producing Pseudomonas aeruginosa strains isolated from burned patients. Iran J Pathol 2008; 3(1): 20-24.
Pasteran F, Veliz O, Rapoport M, et al. Sensitive and specific modified Hodge test for KPC and metallo-beta-lactamase detection in Pseudomonas aeruginosa by use of a novel indicator strain, Klebsiella pneumoniae ATCC 700603. J Clin Microbial 2011; 49(12): 4301-3.
Braun SD, Monecke S, Thürmer A, et al. Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay. PLoS One 2014; 9(7): e102232.
Dally S, Lemuth K, Kaase M, et al. DNA microarray for genotyping antibiotic resistance determinants in Acinetobacter baumannii clinical isolates. Antimicrob Agents Chemother 2013; 57(10): 4761-8.
Bashir D, Thokar MA, Fomda BA, et al. Detection of metallo-beta-lactamase (MBL) producing Pseudomonas aeruginosa at a tertiary care hospital in Kashmir. African J of Microbiol Res 2011; 5(2): 164-172.
Safari M, Alikhani MY, Arabestani MR, et al. Prevalence of Metallo-ß-lactamases Encoding Genes Among Pseudomonas aeruginosa Strains Isolated from the Bedridden Patients in the Intensive Care Units. Avicenna J Clin Microb Infec 2014; 1(1): e19216.
Cockerill FR. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. Twenty Second International Supplement M100-S22. USA: Clinical and Laboratory Standards Institute; 2012.
Kaase M, Szabados F, Wassill L, Gatermann SG. Detection of carbapenemases in Enterobacteriaceae by a commercial multiplex PCR. J Clin Microbiol 2012; 50(9): 3115-8.
Noyal MJ, Menezes GA, Harish BN, et al. Simple screening tests for detection of carbapenemases in clinical isolates of non fermentative Gram-negative bacteria. Indian J Med Res 2009; 129(6): 707-12.
Kato H, Kato N, Watanabe K, et al. Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. J Clin Microbiol 1998; 36 (8): 2178-82.
Poirel L, Walsh TR, Cuvillier V, et al. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011; 70(1): 119-23.
Pitout JD, Gregson DB, Poirel L, et al. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol 2005; 43(7): 3129-35.
Morrow BJ, Pillar CM, Deane J, et al. Activities of carbapenem and comparator agents against contemporary US Pseudomonas aeruginosa isolates from the CAPITAL surveillance program. Diagn Microbiol Infect Dis 2013; 75(4): 412-6.
Shahcheraghi F, Nikbin VS, Feizabadi MM. Identification and genetic characterization of metallo-beta-lactamase-producing strains of Pseudomonas aeruginosa in Tehran, Iran. New Microbiol 2010; 33(3): 243-8.
Strateva T, Yordanov D. Pseudomonas aeruginosa - A phenomenon of bacterial resistance. J Med Microbiol 2009; 58(9): 1133-48.
Khosravi Y, Tay ST, Vadivelu J. Analysis of integrons and associated gene cassettes of metallo-β-lactamase-positive Pseudomonas aeruginosa in Malaysia. J Med Microbiol 2011; 60(7): 988-94.
Walther-Rasmussen J, Høiby N. OXA-type carbapenemases. J Antimicrobial Chemother 2006; 57(3):373-83.
Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007; 20(3): 440-58.
Chen IL, Lee CH, Su LH, et al. Antibiotic consumption and healthcare-associated infections caused by multidrug-resistant gram-negative bacilli at a large medical center in Taiwan from 2002 to 2009: implicating the
importance of antibiotic stewardship. PLoS
One 2013; 8 (5): e65621.
Rosenthal VD, Maki DG, Jamulitrat S, et al. International Nosocomial Infection Control Consortium (INICC) report, data summary for 2003e2008, issued June 2009. Am Journal Infect Control2010; 38: 95 e2e104 e2.
Amjad A, Mirza Ia, Abbasi S, et al. Modified Hodge test: A simple and effective test for detection of carbapenemase production. Iran J Microbiol 2011; 3(4): 189-93.
Files | ||
Issue | Vol 4 No 3-4 (2015) | |
Section | Original Articles | |
Keywords | ||
Antimicrobial resistance Metallo-β-Lactamases Pseudomonas aeruginosa |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |