Prevalence of CTX-M Genes in Bacterial Strain Isolated from Patients Hospitalized in ICU Units in the City of Qom, Iran
Abstract
Background: Pathogenic bacteria because of beta-lactam antibiotic resistance genes are dangerous to society. This resistance due to ESBL genes, plasmids and transposons that by receiving or mutation occurs. The most important factor beta-lactam antibiotic resistance is beta lactamase enzymes. The purpose of this study was to evaluate the frequency of hospital opportunistic pathogenic bacteria producing ESBL and CTX-M genes identified are molecular methods.
Methods: In this study, 500 isolates from patients in the ICU of hospitals in the city of Qom was diagnosed by standard biochemical tests. Combined disk test for isolated resistant strains of ESBL was performed in order to identify. Then, strains producing ESBL, DNA extraction and CTX-M genes were detected by PCR.
Results: A total of 500 strains isolated, 20 strains (51.28%) of P. aeruginosa strains, 40 strains (62.5%) of E. coli strains, 38 strains (48.1%) of K. pneumoniae strains, 8 strains (33.33%) A. baumannii bacteria strains and 4 strains (23.52%) of the strains of Enterobacter were carrying CTX-M genes.
Conclusion: This study represents a high percentage of beta-lactamase resistance among hospital opportunistic pathogens bacteria. Due to the high prevalence of antibiotic resistance carried out detailed antibiogram tests in infections caused by ESBL-producing organisms is necessary.
Philippon A, Arlet G, Lagrange PH. Origin and import of plasmid- mediated extended spectrum B-lactamases. Eur j clin Microbial Infect Dis 1994; 13: 17-29.
Ferna´ndez A, Jose´ Pereira M, et al. Emergence in Spain of multidrug-resistant Enterobacter cloacae clinical isolate producing SFO-1 extended-spectrum beta-lactamase. J Clin Microbiol 2011; 49(3): 822-8.
Jarlier V, Nicolas MH, Fornier G. Extended broad- spectrum B-Lactamases conferring transferable resistance to newer B-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Rev Infect Dis; 1988; 10: 867-878.
Bush K, jacoby GA, medeires A. A functional classification scheme for B-lactamases and its correlation with molecular structure. Antimicrob Agents chemother 1995; 39: 1211-33.
Tzouvelekis LS, Tzelepi E, Tassios PT, et al. CTX-M-type beta-lactamases: an emerging group of extended-spectrum enzymes. Int J Antimicrob Agents 2000; 14: 137-143.
Ishii Y, Ohno A, Taguchi H, et al. Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A beta-lactamase isolated from Escherichia coli. Antimicrob Agents Chemother 1995; 39: 2269-2275.
Bradford PA, Yang Y, Sahm D, et al. CTX-M-5, a novel cefotaxim ehydro lyzing beta-lactamase from an outbreak of Salmonella typhimurium in Latvia. Antimicrob Agents Chemother 1998; 42: 1980-1894.
Bonnet R, Sampaio ILM, Labia R, et al. A novel CTX-M beta-lactamase (CTX-M-8) in cefotaxime resistant Enterobacteriaceae isolated in Brazil. Antimicrob Agents Chemother 2000; 44: 1936-1942.
Bonnet R. Growing group of extended-spectrum beta-lactamases; the CTX-M enzymes. Antimicrobial Agent and Chemother 2004; 48: 1-14.
Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010; 54(3): 969-76.
Ambler R. The structure of beta-lactamases . Philos Trans R Soc Lond B Biol Sci 1980; 289: 32131.
Lahey Clinic. Amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant B-lactamases. Available on Google. Last modified 01/30/06.
Mirzaee M, Pourmand MR, Chitsaz M, et al. Antibiotic resistance to third generation cephalosporins due to CTX-M-Type extended-spectrum b-lactamases in clinical isolates of Escherichia coli. Iran J Pub Health 2009; 38(1): 10-17.
Valenzuela de Silva EM, Mantilla Anaya JR, Reguero MT, et al. Detection of CTX-M-15 and CTX-M-2 in clinical isolates of Enterobactericeae in Bogota, Colombia. J Clin Microbiol 2006; 44(5): 1919-20.
Kim J, Lim YM, Jeong YS, et al. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14 and CTX-M-9 extended-spectrum- b-lactamase in enterobacteriaceae clinical isolates in Korea. Antimicrob Agents Chemother 2005; 49(4): 1572-5.
Eisner A, Fagan EJ, Feierl G, et al. Emergence of Enterobacteriaceae isolates producing CTX-M extended-spectrum- b-lactamase in Austria. Antimicrob Agents Chemother 2006; 50(2): 785-7.
Boyd K, Cheadle RF, Duberg DM, et al. Textbook of Diagnostic Microbiology. Fourth Edition, Saunders Company, 2011; Chapter19, 51-459.
Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement. M100-S222012. Wayne, PA: Clinical and Laboratory Standards Institute.
Livermore DM, Woodford N. Guidance to diagnostic laboratories: laboratory detection and reporting of bacteria with extended spectrum ß-lactamases. London: Health Protection Agency Colindale; 2004: 1-14.
Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement. M100-S222012. Wayne, PA: Clinical and Laboratory Standards Institute.
Claeys G, Verschraegen G, Baere T. et al. PER-1 β-lactamase producing Pseudomonas aeruginosa in an intensive care unit. Antimicrob Chemother 2000, 45: 924-925.
Bert F, Branger C and Zechovsky NL. Identification of PSE and OXA β-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. Antimicrob Chemother 2002; 50: 8-11.
Sanchez UM, Bello TH, Dominguez YM, et al. Transference of extended spectrum beta-lactamases from nosocomial strains of Klebsiella pneumoniae to other species of Enterobacteriaceae. Rev Med Chil 2006; 134(4): 415-20.
Peleg AP, Seifert H, Paterson DL. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clin Microbiol Rev 2008; 21(3): 538-82.
Kim J, Lim YM, Jeong YS, et al. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14 and CTX-M9 extended-spectrum- ß-lactamase in enterobacteriaceae clinical isolates in Korea. Antimicrob Agents Chemother 2005; 49(4): 1572-5.
Khurana S, Taneja N, Sharma M. Extended spectrum β-lactamase mediated resistance in urinary tract isolates of family Enterobacteriaceae; Indian J Med Res 2002; 116: 145-9.
Tavajjohi Z, Moniri R, Khorshidi A. Detection and characterization of multidrug resistance and extended-spectrum-beta-lactamase-producing (ESBLs) Pseudomonas aeruginosa isolates in teaching hospital. Afr J Microbiol Res 2011; 5: 3223-3228.
Mesa R J. Extended-spectrum B-lactamase producing Enterobacteriaceae in different environments (human, food, animal farms and sewage); J Antimicrobial chem 2006; 58: 211-215.
Nasehi L, Shahcheraghi F, Nikbin V, et al. PER, CTX-M, TEM and SHV Beta-lactamases in Clinical Isolates of Klebsiella pneumonia isolated from Tehran, Iran. Iranian J of Basic Medi Sci 2010; 13(3): 111-118.
Behzadian NG, Abdollahi A, Najarpiraye S, et al. Evaluation of bla-ctx-m-type gene in multi drug resistance Klebsiella pneumonia species isolated from clinical samples; Iran University of Medical Science. 2009; 15(60, 61): 37-45.
Soltan-Dallal MM, Molla Aghamirzaei H, Sabbaghi A, et al. Molecular detection of TEM and AmpC (Dha, mox) broad spectrum ß-lactamase in clinical isolates of Escherichia coli. Tehran Univ Medi J. 2010; 68(6): 315-320.
Meyer E, Gastmeier P, Schwab F. The burden of multi resistant bacteria in German intensive careunits. J Antimicrob Chemother 2008; 62(6): 1474-1476.
Files | ||
Issue | Vol 4 No 3-4 (2015) | |
Section | Original Articles | |
Keywords | ||
CTX-M Enzymes ESBL Hospital Pathogens ICU |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |