Identification of Class-1 Integron and Various Β-Lactamase Classes among Clinical Isolates of Pseudomonas aeruginosa at Children's Medical Center Hospital
Abstract
Background: Pseudomonas aeruginosa is one of the most important oppor- tunistic pathogens responsible for various types of infections. Children suffer significant morbidity and mortality due to nosocomial infections. The aim of this study was to investigate the presence of Class1 integron, blaBEL, blaPER, blaKPC, blaVIM, blaIMP and blaOXAgroup-1 genes among P. aeruginosa isolates at Children's Medical Center Hospital in Iran and to determine phenotypic evi- dence of ESBL and MBL production.
Methods: Antibiotic susceptibility tests were analyzed for 72 P. aeruginosa clinical isolates. Isolates were identified by using biochemical tests and con- firmed by PCR assay for oprL gene. ESBL and MBL producer isolates were identified by phenotypic tests (double disc synergy tests). Detection of β- lactamase genes and class-1 integron were performed by PCR method.
Results: All of the isolates were susceptible to ceftazidime / clavulanate, me- ropenem, imipenem and ciprofloxacin. About 83.3% and 16.7% of isolates were resistant to ceftazidime and amikacin respectively. Approximately,83.3% of isolates were considered as potential ESBL producers. None of the clinical isolates showed above β-lactamase genes. It seems that, the reason is the absence of class-1 integron in all of isolates. About 16.7% of strains were identified as multidrug resistant. Fortunately, all of the isolates were sus- ceptible to meropenem and imipenem which are effective against ESBL pro- ducing strains.
Conclusion: The absences of class-1 integron decreases the probability of acquired β-lactamase especially MBL. Thus, absolute susceptibility to carba- penems and ciprofloxacin among P. aeruginosa isolates in pediatric hospital has important implications for empirical antimicrobial therapy. It seems that these properties help to decrease mortality of nosocomial infections within children.
Pier GB, Ramphal R, 2005. Pseudo- monas aeruginosa. In: Mandell, Dou glas, and Bennett’s Principles and Practice of Infectious diseases, 6th ed. Churchill Livingstone, USA, Philadelphia, pp. 2587-615.
Gaynes R, Edwards JR. National nos- ocomial infections surveillance sys- tem: overview of nosocomial infect ions caused by Gram negative bacilli. Clin Infec Dis 2005; 41 (6): 848.
Jarvis WR, Robles B. Nosocomial in- fections in pediatric patients. Adv Pe- diatr Infec Dis 1996; 12: 243-95.
Harris JS. Pediatric nosocomial infec- tions: Children are not little adults. Infec Control Hosp Epidemiol 1997;18 (1): 739-42.
Lambert ML, Suetens C, Savey A, Palomar M, Hiesmayr M, Morales I, et al. Clinical outcomes of health- care-associated infections and antimi- crobial resistance in patients admitted to European intensive-care units: a cohort study. Lancet Infect Dis 2011; 11 (1) 30-38.
Archibald LK, Manning ML, Bell LM, et al. Patient density, nurse to pa- tient ratio and nosocomial infection risk in a pediatric cardiac intensive care unit. Pediatr Infec Dis J 1997; 16 (11): 1045-8.
Alvarez-Ortega C, Wiegand I, Oli- vares J, et al. The intrinsic resistance of Pseudomonas aeruginosa to β-lact ams. Virulence 2011; 2 (2): 144-6.
Poole K, Frank D, Tolmasky M. Pseu- domonas aeruginosa: resistance to the max. Front Microbiol 2011; 2 (65): 1-13.
Navon-Venezia S, Ben-Ami R, Car- meli Y. Update on Pseudomonas ae- ruginosa and Acinetobacter bau- mannii infections in the healthcare set- ting. Curr Opin Infec Dis 2005; 18 (4):306-13.
Cao B, Wang H, Sun H, et al. Risk factors and clinical outcomes of noso- comial multidrug resistant Pseudomo- nas aeruginosa infections. J Hosp In- fec 2004; 57 (2): 112118.
Li XZ, Livermore DM, Nikaido H.Role of efflux pumps in intrinsic re- sistance of Pseudomonas aeruginosa: active efflux as a contributing factor to b-lactam resistance. Antimicrob Age nts Chemother 1994; 38 (8): 1742-52.
Lucignano B, Ranno S, Liesenfeld O, et al. Multiplex PCR allows rapid and accurate diagnosis of bloodstream in- fections in newborns and children with suspected sepsis. J Clin Microbiol 2011; 49 (6): 2252-8.
Wisplinghoff H, Bischoff T, Tallent SM, et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clinical Infectious Diseases 2004; 39 (3): 309-317.
Biedenbach DJ, Moet GJ, Jones RN. Occurrence and antimicrobial resis- tance pattern among bloodstream in- fection isolates from the SENTRY Antimicrobial Surveillance Program (1997-2002). Diagn Microbiol Infec Dis 2004; 50 (1): 59-69.
Rodriguez-Martinez JM, Poirel L, Nordmann P. Treatment and control of severe infections caused by mul ti- resistant Pseudomonas aer-uginosa. Clin Microbiol Infec 2005; 11 (4): 17.
Strateva T, Yordanov D. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol 2009; 58 (9): 1133-48.
Nordmann P, Mammeri H. Extended- spectrum cephalosporinases: structure, detection and epidemiology. Future Microbio 2007; 2 (3): 297.
Rodriguez-Martinez JM, Poirel L, Nordmann P. Extended spectrum cephalosporinases in Pseudomonas ae- ruginosa. Antimicrob Agents Che mother 2009; 53 (5): 1766-71
Rodriguez-Martinez JM, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of carbapenem re- sistance in Pseudomonas aerugin-osa. Antimicrob Agents Chemother 2009; 53 (11): 4783-8.
Bush K, George AJ. Updated func tional classification of β-Lactamases. Antimicrob Agents Chemother 2010;54 (3): 969-76.
Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Age nts Chemother 2010; 54 (1): 24.
Carrer A, Poirel L, Yilmaz M, et al. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob Age nts and Chemother 2010; 54 (3): 1369-73.
Nordmann P, Ronco E, Naas T, et al. Characterization of a novel extended- spectrum b-lactamase from Pseudo- monas aeruginosa. Ant-imicrob Agents Chemother 1993; 37 (5): 962-9.
Nordmann P, Ronco E, Naas T. Se- quence analysis of PER-1 exte ndeds- pectrum b-lactamase from Pseudomo nas aeruginosa and comparison with class Aβ-lactamases. Antimicrob Age nts Chemother 1994; 38 (1): 104-14.
Aktaş Z, Poirel L, Salcioğlu M, et al. PER-1- and OXA-10-like betalacta- mases in ceftazidime-resistant Pseudomonas aeruginosa isolates from in- tensive care unit patients in Istanbul, Turkey. Clin Microbiol Infec 2005; 1 (3): 193-8.
Glupczynski Y, Bogaerts P, Deplano A, et al. Detection and characteriza- tion of class an extended-spectrum b- lactamase-producing Pseudomonas ae ruginosa isolates in Belgian hospitals.J Antimicrob Chemother 2010; 65 (5):866-71
Bogaerts P, DeplanoA ,Glupczynski Y. Emergence and Dissemination of BEL-1-Producing Pseudomonas aeruginosa isolates in Belgium. Antimi crobal Agents and Chemother 2007;51 (4): 1584-5.
Poirel L, Nordmann P, Lagrutta E, et al. Emergence of KPC- producing Pseudomonas aeruginosa in the Unit- ed States. Antimicrob Agents Chemo ther 2010; 54 (7): 3072-6.
Walsh TR, Toleman MA, Poirel L, et al. Metallo-β- lactamases: the quiet before the storm. Clin Microbiol Rev 2005; 18 (2): 306-25.
Gupta V. Metallo beta lactamases in Pseudomonas aeruginosa and Acin etobacter species. Expert Opin Inve stig Drugs 2008; 17 (2): 131-43.
Walsh TR. Emerging carbapenemases: a global perspective. Int J Ant imi- crob Agents 2010; (36): S8-S14.
Mirsalehian A, Feizabadi M, Nakhjavani FA, et al. Detection of VE B-1, OXA-10 and PER-1 genotypes in extended-spectrum beta-lactamase- prod ucing Pseudomonas ae ruginosa strai ns isolated from burn patients. Burns 2010; 36 (1): 70-4.
Jabalameli F, Mirsalehian A, Sotou- deh N. Multiple-locus variable num- ber of tandem repeats (VNTR) finger printing (MLVF) and antibacterial re-sistance profiles of extended spectrum beta lactamase (ESBL) producing Pse udomonas aeruginosa am ong burnt patients in Tehran. Burns 2011; 37 (7): 1202-07.
Kalantar E, Taherzadeh S, Ghadimi T, et al. Pseudomonas aeruginosa an emerging pathogen among burn patie nts in Kurdistan Province, Iran. South- east Asian J Trop Med Public Health 2012; 43 (3): 712-7.
Khosravi AD, Mihani F. Detection of metallo-β-lactamase producing Pseu- domonas aeruginosa strains isolated from burn patients in Ahwaz, Iran. Diagn Microbiol Infec Dis 2008; 60 (1): 125-8.
Rezaei YH, Behzadian NG, Peerayeh SN. Prevalence and detection of metallo-β-lactamase (MBL) producing Pseudomonas aeruginosa strains from clinical isolates in Iran. Ann Microbiol 2007; 57 (2): 293-5.
Yousefi S, Farajnia S, Nahaeib MR, et al. Detection of metallo-β lactamase– encoding genes among clinical iso- lates of Pseudomonas aeruginosa in northwest of Iran. Diagn Microbiol Infect Dis 2010; 68 (3): 322-5.
Shahcheraghi F, Nikbin VS, Feizabadi MM. Identification and genetic characterization of metallobetalact am ase-producing strains of Pseudomonas aeruginosa in Tehran, Iran. New Mi- crobiolo 2010; 33 (3): 243-8.
Akhi MT, Khalili Y, Ghottaslou R, et al. Prevalence of PER-1-type Extend- ed-Spectrum Beta-Lactamaes in Clin- ical Strains of Pseudomonas aeruginosa Isolated from Tabriz, Iran.Iranian J Basic Med Sci 2012; 15 (1):678-682.
Shahcheraghi F, Nikbin VS, Feizab- adi MM. Prevalence of ESBLs genes among multidrug resistant isolates of Pseudomonas aeruginosa isolated fro- m patients in Tehran. Microb Drug Re sis 2009; 15 (1): 37.
Riccio ML, Pallecchi L, Docquier JD.Clonal relatedness and conserved integron structures in epidemiologically unrelated Pseudomonas aeruginosa strains producing the VIM-1 Metallo- β-Lactamase from different Italian hos pitals. Antimic-rob Agents Chemot her 2005; 49 (1): 104-10.
Stalder T, Barraud O, Casellas M, et al. Integron involvement in environ- mental spread of antibiotic resistance. Front Microbiol 2012; 3: 119-23.
Recchia GD, Hall RM. Gene cas- settes: a new class of mobile element. Microbiol 1995; 141 (Pt12): 3015-27.
Partridge SR, Collis CM, Hall RM.Class 1 integron containing a new gene cassette, aadA10, associated with Tn1404 from R151. Antimic-rob Age nts Chemother 2002; 46 (8): 2400-8.
Clinical and Laboratory Standards In- stitute (CLSI): Performance standards for antimicrobial susceptibility testing. Twentieth Informational Supplement M100-S12.Wayne, PA: CLSI, 2010.
Lee K, Lim YS, Yong D, et al. Evalua- tion of the Hodge test and the imipenem-EDTA double-disc synergy test for differentiating metallo-β-la ctamase-producing isolates of Pseu- domonas spp. and Acinetobac-ter spp. J Clin Microbiol 2003; 41 (10): 4623-9.
Bert F, Branger C, Lambert-Zec hovsky N. Identification of PSE and OXA β-lactamase genes in Pseudomo nas aeruginosa using PCR–restriction fragment length polymorphism. J Antimicrob Che-mother 2002; 50 (1):11-8.
Bogaerts P, Huang T, Rodriguez- Villalobos H, et al. Nosocomial infec- tions caused by multidrug-resistant Pseudomonas putida isolates producing VIM-2 and VIM-4 metalloblactamases. J of Antimic-rob Chemo ther 2008; 61 (3): 749-51.
Jeong SH, Lee K, Chong Y, et al.Characterization of a new integron containing VIM-2, a metallo-β-lact amase gene cassette, in a clinical iso- late of Enterobacter cloacae. J Antimicrob Chemother 2003; 51 (2):397-400.
Deschaght P, Baere TD, Simaey LV, et al. Comparison of the sensitivity of culture, PCR and quantitative real-time PCR for the detection of Pseudomonas aeruginosa in sputum of cystic fibrosis patients. BMC Microbiol 2009; 9: 244.
Bass L, Liebert CA, Lee MD, et al.Incidence and Characterization of Integrons, Genetic Elements Mediat- ing Multiple-Drug Resistance, in Avi- an Escherichia coli. Antimicrob Agents Chemother 1999; 43 (12):2925-9.
Pourakbari1 B, Sadr A, Ashtiani MT, et al. Five-year evaluation of the an- timicrobial susceptibility patterns of bacteria causing bloodstream infec- tions in Iran. J Infec Dev Ctries 2005;6 (2): 120-5.
Ghorashi Z, Nezami N, Ghotaslou R, et al. Pattern of Pseudomonas aeruginosadrug resistance in Tabriz Children Hospital. Pak J Biol Sci 2010;13 (8): 400-4.
Owlia P, Bahar MA, Sadri, et al. An- tibiotic resistance patterns of isolated pseudomonas aeruginosa strains from infections of burned patients. J Med Council IRI 2007; 25 (1): 26-33.
Ranjbar R, Owlia P, Saderi H, et al.Characterization of Pseudomonas aeruginosa Strains Isolated from Burned Patients Hospitalized in a Ma- jor Burn Center in Tehran, Iran. Acta Med Iran 2011; 49 (10): 675-9.
Eftekhar F, Rastegar M, Golalipoor M, et al. Detection of Extended Spec- trum β-Lactamases in Urinary Isolates of Klebsiella pneumoniae in Relation to BlaSHV, BlaTEM and BlaCTX-M Gene Carriage. Iran J Public Health 2012;
(3): 127-32.
Files | ||
Issue | Vol 1 No 3-4 (2012) | |
Section | Original Articles | |
Keywords | ||
InTI2 protein E. coli Integrons Pediatrics Pseudomonas aeruginosa beta-Lactamases |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |