Original Articles

Green Synthesis of Silver Nanoparticles Using an Ephedra sinica Herb Extract with Antibacterial Properties


Background:     The exceptional properties of the silver nanoparticles play an important role in nanoscience and nanotechnology, particularly in nanomedicine and also offer several applications in the biomedicine field. The development of antibacterials which are clinically useful against bacteria and drug resistant microorganisms, it is one of the main approaches of silver nanoparticles. However, it is essential to improve environmentally friendly methods for their synthesisin this respect, the principal aim of this research is focused on to propose a simplified and efficient green synthesis of silver nanoparticles with proven antibacterial properties. Methods:     The green synthesis route is based on the use of the Ephedra sinica as reducing agent of the silver ions in aqueous solution at room temperature. Complementary, the antibacterial activity of the silver nanoparticles against E. coli, S. aureus, S. dysenteriae, B. cereus and L. monocytogenes was confirmed. Green synthesized silver nanoparticles have been characterized by UV-Vis spectroscopy, XRD, TEM and FTIR. Results:     The silver nanoparticles revealed Gaussian distributions with the average diameter of 10 nm and results showed that the lowest MIC and MBC of Ephedra sinica herb extract were 25 and 50 mg/mL, respectively and also the lowest MIC and MBC of the antibacterial activity of the silver nanoparticles produced by Ephedra sinica herb extract were 6.25 and 12.5 mg/mL, respectively. Conclusion:     The observed results suggested that using Ephedra sinica, it is possible to performed silver nanoparticles with controlled characteristics and with significant inhibitory activity against the E. coli, S. aureus, S. dysenteriae, B. cereus and L. monocytogenes.
1. Orejola J, Matsuo Y, Saito Y, et al. Characterizatio of proanthocyanidin oligomers of Ephedra sinica. Molecules 2017; 22(8):1308.
2. Okada T, Takahashi H, Suzuki Y, et al. Comparative analysis of transcriptomes in aerial stems and roots of Ephedra sinica based on high-throughput mRNA sequencing. Genom Data 2016; 10:4-11.
3. Organization W H. WHO monographs on selected medicinal plants: World Health Organization; 1999.
4. Morris JS, Groves RA, Hagel JM, et al. An N-methyltransferase from Ephedra sinica catalyzing the formation of ephedrine and pseudoephedrine enables microbial phenylalkylamine production. J Biol Chem 2018: jbc.RA118.004067.
5. Liang S, Meng X, Wang Z, et al. Polysaccharide from Ephedra sinica stapf inhibits inflammation expression by regulating Factor-β1/Smad2 signaling. Int J Biol Macromol 2018; 106:947-54.
6. Wang LL, Kakiuchi N, Mikage M. Studies of Ephedra plants in Asia. Part 6: Geographical changes of anatomical features and alkaloids content of Ephedra sinica. J Nat Med 2010;
64(1): 63.
7. Liu YM, Sheu SJ, Chiou SH, et al. A comparative study of commercial samples of Ephedrae herba. Planta Med 1993; 59(04):376-8.
8. Westfall T, Westfall D. Goodman & Gilman’s: The Pharmacological Basis of Therapeutics Adrenergic Agonists and Antagonists. In: New York, McGraw-Hill; 2012.
9. Caveney S, Charlet DA, Freitag H, et al. New observations on the secondary chemistry of world Ephedra (Ephedraceae). Am J Bot 2001; 88(7): 1199-208.
10. Bruyne T, Pieters L, Deelstra H, et al. Condensed vegetable tannins: biodiversity in structure and biological activities. Biochem Syst Ecol 1999; 27(4):445-59.
11. Keikhaie KR, Fazeli-Nasab B, Jahantigh HR, et al. Antibacterial activity of ethyl acetate and methanol extracts of Securigera securidaca, Withania sominefra, Rosmarinus officinalis and Aloe vera plants against important human pathogens. J Med Bacteriol 2018; 7(1-2):13-21.
12. Rezaei-Nasab M, Komeili G, Fazeli-Nasab B. Gastroprotective effects of aqueous and hydroalcholic extract of Scrophularia striata on ethanol-induced gastric ulcers in rats. Der Pharm Lett 2017; 9(5):84-93.
13. Magos GA, Mateos JC, Páez E, et al. Hypotensive and vasorelaxant effects of the procyanidin fraction from Guazuma ulmifolia bark in normotensive and hypertensive rats. J Ethno pharmacol 2008; 117(1):58-68.
14. Sanz M, Terencio M, Paya M. Isolation and hypotensive activity of a polymeric procyanidin fraction from Pistacia lentiscus. Pharmazie 1992; 47(6):466-72.
15. Zeng X, Ma Y, Gu H, et al. The effect of oligomeric proanthocyanidin on airway microenvironment in asthma. Eur Respir J 2016; 48(60): PA4100.
16. Zhou DY wanton, Fang SR, Zou CF, et al. Proanthocyanidin from grape seed extract inhibits airway inflammation and remodeling in a murine model of chronic asthma. Nat Prod Commun 2015; 10(2):257-62.
17. Okawa M, Kinjo J, Nohara T, et al. DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scaveng-ing activity of flavonoids obtained from some medicinal plants. Biol Pharm Bull 2001; 24(10): 1202-5.
18. Li L, Yu CH, Ying HZ, et al. Antiviral effects of modified Dingchuan decoction against respiratory syncytial virus infection in vitro and in an immunosuppressive mouse model. J Ethno pharmacol 2013; 147(1):238-44.
19. Kim IS, Park YJ, Yoon SJ, et al. Ephedrannin A and B from roots of Ephedra sinica inhibit lipopolysaccharide-induced inflammatory mediators by suppressing nuclear factor-κB activation in RAW 264.7 macrophages. Int Immunopharmacol 2010; 10(12):1616-25.
20. Kim SY, Son KH, Chang HW, et al. Inhibitory effects of plant extracts on adjuvant-induced arthritis. Arch Pharm Res 1997; 20(4):313.
21. Zang X, Shang M, Xu F, et al. A-Type proanthocyanidins from the stems of Ephedra sinica (Ephedraceae) and their antimicrobial activities. Molecules 2013; 18(5):5172-89.
22. Bagheri-Gavkosh S, Bigdeli M, Shams-Ghahfarokhi M, et al. Inhibitory effects of Ephedra major host on Aspergillus parasiticus growth and aflatoxin production. Mycopathologia 2009; 168(5):249-55.
23. Park J, Lee H, Mun H, et al. Effect of Ultrasonification Process on Enhancement of Immuno-stimulatory Activity of Ephedra sinica Stapf and Rubus coreanus Miq. Korean Soc Biotechnol Bioeng J 2004; 19(2):113-7.
24. Chen R, Zhu G and Xu Z. Effect of different extracts from Ephedra on cell immunity. J Tradit Chin Med 2001; 4:1-15.
25. Nam NH, Lee CW, Hong DH, et al. Antiinvasive, antiangiogenic and antitumour activity of Ephedra sinica extract. Phytother Res 2003; 17(1):70-6.
26. Tao H, Wang L, Cui Z, et al. Dimeric proanthocyanidins from the roots of Ephedra sinica. Planta Med 2008; 74(15):1823-25.
27. Yokozawa T, Fujioka K, Oura H, et al. Decrease in uraemic toxins, a newly found beneficial effect of Ephedrae herba. Phytother Res 1995; 9(5): 382-4.
28. Larue C, Castillo-Michel H, Sobanska S, et al. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 2014; 264:98-106.
29. El-Chaghaby GA, Ahmad AF. Biosynthesis of silver nanoparticles using Pistacia lentiscus leaves extract and investigation of their antimicrobial effect. Orient J Chem 2011; 27(3):929-36.
30. Veerasamy R, Xin TZ, Gunasagaran S, et al. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 2011; 15(2):113-120.
31. Ahmed S, Ahmad M, Swami BL, et al. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res Appl Sci 2016; 9(1):1-7.
32. Ahmed S, Ahmad M, Swami BL, et al. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 2016; 7(1):17-28.
33. Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 2009; 32(1):79-84.
34. Klaus T, Joerger R, Olsson E, et al. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 1999; 96(24):13611-4.
35. Konishi Y, Ohno K, Saitoh N, et al. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 2007; 128(3):648-53.
36. Nair B, Pradeep T. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2002; 2(4):293-8.
37. Willner I, Baron R and Willner B. Growing metal nanoparticles by enzymes. Adv Mater 2006; 18(9):1109-120.
38. Shankar SS, Rai A, Ahmad A, et al. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 2004; 275(2):496-502.
39. Mittal J, Batra A, Singh A, et al. Phytofabrication of nanoparticles through plant as nanofactories. Adv Nat Sci: Nanosci Nanotechnol 2014; 5(4): 043002.
40. Jiang H, Manolache S, Wong ACL, et al. Plasma enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J Appl Polym Sci 2004; 93(3):1411-22.
41. Becker RO. Silver ions in the treatment of local infections. Metal-based drugs 1999; 6(4-5):311-14.
42. Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 2003; 27(2-3):341-53.
43. Padalia H, Moteriya P, Chanda S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab J Chem 2015; 8(5):732-41.
44. Sadeghi B, Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochi Acta A Mol Biomol Spectrosc 2015; 134: 310-315.
45. Salari Z, Danafar F, Dabaghi S, et al. Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. J Saudi Chem Soc 2016; 20(4):459-64.
46. Logeswari P, Silambarasan S, Abraham J. Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Scientia Iranica 2013; 20(3):1049-54.
47. Sre PR, Reka M, Poovazhagi R, et al. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim. Acta A Mol Biomol Spectrosc 2015; 135: 1137-44.
48. Bindhu M, Umadevi M. Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 2015; 135:373-8.
49. Logeswari P, Silambarasan S, Abraham J. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc 2015; 19(3): 311-17.
50. Khalil MM, Ismail EH, El-Baghdady KZ, et al. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem 2014; 7(6):1131-9.
51. Krishnaraj C, Jagan E, Rajasekar S, et al. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloid Surface B 2010; 76(1):50-6.
52. Nabikhan A, Kandasamy K, Raj A, et al. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloid Surface B 2010; 79(2):488-93.
53. Davari A, Solouki M, Fazeli-Nasab B. Effects of jasmonic acid and titanium dioxide nanoparticles on process of changes of phytochemical and antioxidant in genotypes of Satureja hortensis L. Eco-Phytochemical J medicinal plants 2018; 5(4): 1-20.
54. Dolatabadi S, Emrani S, Mehrafruz E, et al. Green synthesis and antibacterial effect of silver nanoparticles using Eucalyptus camaldulensis. J Neyshabur University Med Sci 2017; 5(3):74-85.
55. Etemadi M, Mohebbi - Kalhori D, Azizian Shermeh O, et al. Phytosynthesis of Silver Nanoparticles using aqueous extract of Camellia sinensis L. and study of their antibacterial activities. J Fasa University Med Sci 2017; 7(1): 39-52.
56. de Jesús Ruíz-Baltazar Á, Reyes-López SY, Larrañaga D, et al. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results Phys 2017; 7:2639-43.
57. Yu J, Lei J, Yu H, et al. Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata. Phytochemistry 2004; 65(7): 881-4.
58. Petrus E, Tinakumari S, Chai L, et al. A study on the minimum inhibitory concentration and minimum bactericidal concentration of nano colloidal silver on food-borne pathogens. Int Food Res J 2011; 18(1):55-66.
59. Huang H and Yang X. Synthesis of polysaccharide - stabilized gold and silver nanoparticles: a green method. Carbohydr Res 2004; 339(15):2627-31.
60. Mason C, Vivekanandhan S, Misra M, et al. Switchgrass (Panicum virgatum) extract mediated green synthesis of silver nanoparticles. World J Nano Sci Eng 2012; 2(02):47.
61. Pourmortazavi SM, Taghdiri M, Makari V, et al. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim. Acta A Mol Biomol Spectrosc 2015; 136:1249-54.
62. Ibrahim HM. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 2015; 8(3):265-75.
63. Bagherzade G, Tavakoli MM, Namaei MH. Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac J Trop Biomed 2017; 7(3):227-33.
64. Hoseinnejad M, Jafari SM, Katouzian I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol 2018; 44(2):161-81.
65. Siddiqui MN, Redhwi HH, Achilias DS, et al. Green synthesis of silver nanoparticles and study of their antimicrobial properties. J Polym Environ 2018; 26(2):423-433.
66. Tripathy S, Das S, Chakraborty SP, et al. Synthesis, characterization of chitosan–tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial
efficacy against rodent parasite: A dose and duration dependent approach. Int J Pharm 2012; 434(1-2):292-305.
67. Khan Z, Singh T, Hussain JI, et al. Starch-directed green synthesis, characterization and morphology of silver nanoparticles. Colloid Surface B 2013; 102:578-84.
68. Zhang W, Qiao X, Chen J. Synthesis of silver nanoparticles—effects of concerned parameters in water/oil microemulsion. Mater Sci Eng B 2007; 142(1):1-15.
69. Petit C, Lixon P, Pileni MP. In situ synthesis of silver nanocluster in AOT reverse micelles. J Phys Chem A 1993; 97(49):12974-83.
70. Prathna T, Chandrasekaran N, Raichur AM, et al. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloid Surface B 2011; 82(1):152-9.
71. Miri A, Sarani M, Bazaz MR, et al. Plant -mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties. Spectrochim Acta A Mol Biomol Spectrosc 2015; 141:287-91.
72. Jancy ME, Inbathamizh L. Green synthesis and characterization of nano silver using leaf extract of Morinda Pubescens. Asian J Pharm Clin Res 2012; 5(Suppl 1):159-62.
73. Vaidyanathan R, Gopalram S, Kalishwaralal K, et al. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids and Surfaces B: Biointerfaces 2010; 75(1):335-41.
74. Sun Q, Cai X, Li J, et al. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf A Physicochem Eng Asp 2014; 444:226-31.
75. Smitha S, Philip D, Gopchandran K. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim. Acta A Mol Biomol Spectrosc 2009; 74(3):735-9.
76. Xie L, Yu Z, Islam SM, et al. Remarkable acid stability of polypyrrole-MoS4: a highly selective and efficient scavenger of heavy metals over a wide pH Range. Adv Funct Mater 2018; 28(20):1800502.
77. Balashanmugam P, Kalaichelvan PT. Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. aqueous extract, and coated on cotton cloth for effective antibacterial activity. Int J Nanomed 2015; 10(Suppl 1): 87-97.
78. Devaraj P, Kumari P, Aarti C, et al. Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. J Nanotechnol 2013; 2013: Article ID 598328.
79. Macdonald I, Smith W. Orientation of cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir 1996; 12(3):706-13.
80. Van de Weert M, Hering JA, Haris PI. Fourier transform infrared. methods for structural analysis of protein pharmaceuticals: Chapter 4, pp. 131-166. In Biotechnology: Pharmaceutical Aspects, Volume III. Edited by W. Jiskoot and D. Crommelin. AAPS Press; 2005.
81. Bokaeian M, Fakheri BA, Mohasseli T, et al. Antibacterial activity of silver nanoparticles produced by plantago ovata seed extract against antibiotic resistant Staphylococcus aureus. Int J Infect 2015; 2(1):1-3.
82. Balamanikandan T, Balaji S, Pandiarajan J. Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial and antifungal activity. World App Sci J 2015; 33:939-43.
83. Kim SH, Lee HS, Ryu DS, et al. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol 2011; 39(1):77-85.
84. Fazeli-Nasab B and Mirzaei N. Evaluation of total phenol and flavonoid content in a wide range of local and imported plants. Sci J Ilam University Med Sci 2018; 26(2):141-54.
85. Fazeli-Nasab B, Sirousmehr A, Mirzaei N, et al. Evaluation of total phenolic, flavenoeid content and antioxidant activity of Leaf and Fruit in 14 different genotypes of Ziziphus mauritiana L. in
south of Iran. Eco-Phytochem J Med Plants 2017; 4(4):1-14.
86. Tajkarimi M, Ibrahim SA, Cliver D. Antimicrobial herb and spice compounds in food. Food control 2010; 21(9):1199-1218.
87. Burt S. Essential oils: their antibacterial properties and potential applications in foods (a review). Int J Food Microbiol 2004; 94(3):223-53.
88. Pazos-Ortiz E, Roque-Ruiz JH, Hinojos-Márquez EA, et al. Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against Gram-positive and Gram-negative Bacteria. J Nanomater 2017; 2017.
89. López-Esparza J, Espinosa - Cristóbal LNF, Donohue-Cornejo A, et al. Antimicrobial activity of silver nanoparticles in polycaprolactone nanofibers against gram-positive and gram-negative bacteria. Ind Eng Chem Res 2016; 55(49): 12532-8.
90. Schrand AM, Braydich-Stolle LK, Schlager JJ, et al. Can silver nanoparticles be useful as potential biological labels? Nanotechnol 2008; 19(23): 235104.
91. Braydich-Stolle LK, Lucas B, Schrand A, et al. Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 2010; 116(2):577-89.
92. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009; 27(1):76-83.
93. Singh LR, Ningthoujam R, Sudarsan V, et al. Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core–shell formation effects. Nanotechnol 2008; 19(5):055201.
94. Gordon S, Teichmann E, Young K, et al. In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur J Pharm Sci 2010; 41(2):360-8.
95. Mickymaray S, Al Aboody MS, Rath PK, et al. Screening and antibacterial efficacy of selected Indian medicinal plants. Asian Pac J Trop Biomed 2016; 6(3):185-91.
IssueVol 10 No 1-2 (2021) QRcode
SectionOriginal Articles
Antimicrobial Biomedicine Ephedrine FTIR Nanoscience XRD

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Fazeli-Nasab B, Solouki M, Sobhanizadeh A. Green Synthesis of Silver Nanoparticles Using an Ephedra sinica Herb Extract with Antibacterial Properties. J Med Bacteriol. 10(1,2):30-47.