Review Articles

Carbapenem-Resistance in Clinical Klebsiella pneumoniae Isolates from Iran, Review Article

Abstract

Background:      Because of the current limitations of therapeutic methods, the worldwide appearance and spreading of carbapenem-resistant (CR)-Klebsiella pneumoniae has made to a key concern in the healthcare system. K. pneumoniae, the most frequent Klebsiella species is the cause of human infections, classified as top three pathogens of global concern which established in 2014 WHO Global Report on Surveillance of Antimicrobial Resistance.

Methods:      Embase, PubMed/Medline, Scopus, Google Scholar, Web of Sciences and Iranian databases were searched to retrieve the potentially relevant studies. In this review, we explored the prevalence of K. pneumoniae generating three universal carbapenemases (KPCs, NDMs, and OXA-48-like) by following keywords: "carbapenem resistance" and"blaKPC" and"metallo beta lactamase" and "blaNDM" and "blaOXA" and "Klebsiella pneumoniae" and Iran.

Results:      After exploiting predefined inclusion and exclusion criteria, 37 articles were collected that reported prevalence of carbapenem-resistant Klebsiella pneumoniae. At finally, 20 studies reported blaNDM , 17 studies reported blaKPC, 14 studies reported blaOXA-48 and blaVIM as gene cause resistance among Klebsiella pneumoniae strains. The described resistance to carbapenem varied across different studies, ranging from 4.4% to 100%.

Conclusion:      Our findings demonstrated that the high prevalence of carbapenem-resistant Klebsiella pneumoniae expresses concern over most Iranian hospitals.

1. Sonnevend Á, Ghazawi A, Hashmey R, et al. Multihospital occurrence of pan-resistant Klebsiella pneumoniae sequence type 147 with an ISEcp1-directed blaOXA-181 insertion in the mgrB gene in the United Arab Emirates. Antimicrob Agents Chemother 2017; 61(7):00418-17.
2. Lee CR, Lee JH, Park KS, et al. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol 2016; 7:895.
3. Tängdén T, Hickman RA, Forsberg P, et al. Evaluation of double-and triple-antibiotic combinations for VIM-and NDM-producing Klebsiella pneumoniae by in vitro time-kill experiments. Antimicrob Agents Chemother 2014; 58(3):1757-62.
4. Kim YJ, Kim S, Kim J, et al. Tracking short-term changes in the genetic diversity and antimicrobial resistance of OXA-232-producing Klebsiella pneumoniae ST14 in clinical settings. Clin Microbiol Infect 2020; 26(1):78-86.
5. Lomonaco S, Crawford MA, Lascols C, et al. Resistome of carbapenem-and colistin-resistant Klebsiella pneumoniae clinical isolates. PloS One 2018; 13(6).
6. Benulič K, Pirš M, Couto N, et al. Whole genome sequencing characterization of Slovenian carbapenem-resistant Klebsiella pneumoniae, including OXA-48 and NDM-1 producing outbreak isolates. PloS One 2020; 15(4):0231503.
7. vanDuin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017; 8(4):460-9.
8. Khan FA, Hellmark B, Ehricht R, et al. Related carbapenemase-producing Klebsiella isolates detected in both a hospital and associated aquatic environment in Sweden. Europ J Clin Microbiol Infect 2018; 37(12):2241-51.
9. Mezzatesta M, Gona F, Caio C, et al. Outbreak of KPC-3-producing, and colistin-resistant, Klebsiella pneumoniae infections in two Sicilian hospitals. Clin Microbiol Infect 2011; 17(9):1444-7.
10. Kilic A, Baysallar M. The first Klebsiella pneumoniae isolate co-producing OXA-48 and NDM-1 in Turkey. Anna lab med 2015; 35(3):382-3.
11. Yigit H, Queenan AM, Anderson GJ, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001; 45(4):1151-61.
12. Papp-Wallace KM, Bethel CR, Distler AM, et al. Inhibitor resistance in the KPC-2 β-lactamase, a preeminent property of this class A β-lactamase. Antimicrob Agents Chemother 2010; 54(2):890-7.
13. Chen L, Mathema B, Chavda KD, et al. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microniol 2014; 22(12):686-96.
14. García-Fernández A, Villa L, Carta C, et al. Klebsiella pneumoniae ST258 producing KPC-3 identified in Italy carries novel plasmids and OmpK36/OmpK35 porin variants. Antimicrob Agents Chemother 2012; 56(4):2143-5.
15. Pitout JD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 2015; 59(10):5873-84.
16. Naas T, Cuzon G, Villegas MV, et al. Genetic structures at the origin of acquisition of the β-lactamase blaKPC gene. Antimicrob Agents Chemother 2008; 52(4):1257-63.
17. Chen L, Chavda KD, Melano RG, et al. Molecular survey of the dissemination of two blaKPC-harboring IncFIA plasmids in New Jersey and New York hospitals. Antimicrob Agents Chemother 2014; 58(4):2289-94.
18. Jeon JH, Lee JH, Lee JJ, et al. Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int J Mol Sci 2015; 16(5):9654-92.
19. Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect 2014; 20(9):821-30.
20. Barberino MG, CruvinelSdA, Faria C, et al. Isolation of blaNDM-producing Enterobacteriaceae in a public hospital in Salvador, Bahia, Brazil. Braz J Infect Dis 2018; 22(1):47-50.
21. Rojas LJ, Hujer AM, Rudin SD, et al. NDM-5 and OXA-181 beta-lactamases, a significant threat continues to spread in the Americas. Antimicrob Agents Chemother 2017; 61(7):00454-17.
22. Roy S, Singh AK, Viswanathan R, et al. Transmission of imipenem resistance determinants during the course of an outbreak of NDM-1 Escherichia coli in a sick newborn care unit. J Antimicrob Chemother 2011; 66(12):2773-80.
23. Jamal WY, Albert MJ, Rotimi VO. High prevalence of New Delhi metallo-β-lactamase-1 (NDM-1) producers among carbapenem-resistant Enterobacteriaceae in Kuwait. PloS One 2016; 11(3):0152638.
24. Cuzon G, Ouanich J, Gondret R, et al. Outbreak of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in France. Antimicrob Agents Chemother 2011; 55(5):2420-3.
25. Sherchan JB, Tada T, Shrestha S, et al. Emergence of clinical isolates of highly carbapenem-resistant Klebsiella pneumoniae co-harboring blaNDM-5 and blaOXA-181 or-232 in Nepal. Int J infect Dis 2020; 92:247-52.
26. Barbarini D, Russello G, Brovarone F, et al. Evaluation of carbapenem-resistant Enterobacteriaceae in an Italian setting: report from the trench. Infect Genet Evol 2015; 30:8-14.
27. Shakibaie MR, Shahcheraghi F, Hashemi A, et al. Detection of TEM, SHV and PER type extended-spectrum ß-lactamase genes among clinical strains of Pseudomonas aeruginosa isolated from burnt patients at Shafa-Hospital, Kerman, Iran. Iran J Basic Med Sci 2008; 11(2):104-11.
28. Nordmann P, Poirel L, Carrër A, et al. How to detect NDM-1 producers. J Clin Microbiol 2011; 49(2):718-21.
29. Castanheira M, Deshpande LM, Mathai D, et al. Early dissemination of NDM-1-and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006-2007. Antimicrob Agents Chemother 2011; 55(3):1274-8.
30. Ong DC, Koh TH, Syahidah N, et al. Rapid detection of the bla NDM-1 gene by real-time PCR. Antimicrob Agents Chemother 2011; 66(7):1647-9.
31. Kaase M, Nordmann P, Wichelhaus TA, et al. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. Antimicrob Agents Chemother 2011; 66(6):1260-2.
32. Zhang Y, Wu N, Zhu B, et al. Establishment of loop-mediated isothermal amplification technique for rapid detection of NDM-1 gene. Chin J Biotechnol 2011; 27(8):1232-8.
33. Pajand O, Darabi N, Arab M, et al. The emergence of the hypervirulent Klebsiella pneumoniae (hvKp) strains among circulating clonal complex 147 (CC147) harbouringblaNDM/OXA-48 carbapenemases in a tertiary care center of Iran. Ann Clin Microbiol Antimicrob 2020; 19:1-9.
34. Hosseinzadeh Z, Ebrahim-Saraie HS, Sarvari J, et al. Emerge of blaNDM-1 and blaOXA-48-like harboring carbapenem-resistant Klebsiella pneumoniae isolates from hospitalized patients in southwestern Iran J Chin Med Assoc 2018; 81(6):536-40.
35. Shoja S, Ansari M, Faridi F, et al. Identification of Carbapenem-Resistant Klebsiella pneumoniae with Emphasis on New Delhi Metallo-Beta-Lactamase-1 (blaNDM-1) in Bandar Abbas, South of Iran. Microb Drug Resist 2018; 24(4):447-54.
36. Gheitani L, Fazeli H, Moghim S, et al. Frequency Determination of Carbapenem-Resistant Klebsiella Pneumoniae (CRKP) Isolated from hospitals in Isfahan of Iran and Evaluation of Synergistic Effect of Colistin and Meropenem on them. Mol Cell Biol (Noisy-le-Grand, France) 2018; 64(1):70-4.
37. Firoozeh F, Mahluji Z, Shams E, et al. New Delhi metallo-β-lactamase-1-producing Klebsiella pneumoniae isolates in hospitalized patients in Kashan, Iran. Iran J Microbiol 2017; 9(5):283.
38. Bina M, Pournajaf A, Mirkalantari S, et al. Detection of the Klebsiella pneumoniae carbapenemase (KPC) in K. pneumoniae Isolated from the Clinical Samples by the Phenotypic and Genotypic Methods. Iran J Pathol 2015; 10(3):199.
39. Jamali S, Tavakoly T, Mojtahedi A, et al. The Phylogenetic Relatedness of blaNDM-1 Harboring Extended-Spectrum β-Lactamase Producing Uropathogenic Escherichia coli and Klebsiella pneumoniae in the North of Iran. Infect Drug Resist 2020; 13:651.
40. Moghadampour M, Rezaei A, Faghri J. The emergence of blaOXA-48 and blaNDM among ESBL-producing Klebsiella pneumoniae in clinical isolates of a tertiary hospital in Iran. Acta Microbiol Immunol Hung 2018; 65(3):335-44.
41. Gheitani L, Fazeli H. Prevalence of blaVIM, blaIMP, and blaKPC Genes among Carbapenem-Resistant Klebsiella pneumoniae (CRKP) Isolated from Kurdistan and Isfahan Hospitals, Iran. J Mol Mod 2018; 6(2):12-20.
42. Shahcheraghi F, Nobari S, Rahmati Ghezelgeh F, et al. First report of New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae in Iran. Microb Drug Resist 2013; 19(1):30-6.
43. Firoozeh F, Aghaseyed-Hosseini M, Zibaei M, et al. Detection of blaKPC and blaGEScarbapenemase genes in Klebsiella pneumoniae isolated from hospitalized patients in Kashan, Iran. Recent. Pat Anti infect Drug Discov 2016; 11(2):183-8.
44. Kooti S, Zamani K, Sisakht MT, et al. Phenotypic and genotypic detection of antibiotic resistance among metallo-beta-lactamases producing Klebsiella pneumoniae strains isolated from patients in Intensive Care Units in Shiraz, Iran. Gene Rep 2019; 17:100522.
45. Armin S, Fallah F, Azimi L, et al. Warning: spread of NDM-1 in two border towns of Iran. Cell Mol Biol (Noisy-le-grand) 2018; 30(64):10.
46. Nobari S, Shahcheraghi F, Rahmati Ghezelgeh F, et al. Molecular characterization of carbapenem-resistant strains of Klebsiella pneumoniae isolated from Iranian patients: first identification of blaKPC gene in Iran. Microb Drug Resist 2014; 20(4):285-93.
47. Azimi L, Nordmann P, Lari AR, et al. First report of OXA-48-producing Klebsiella pneumoniae strains in Iran. GMS Hyg Infect Control 2014; 9(1).
48. Kiaei S, Moradi M, Hosseini-Nave H, et al. Endemic dissemination of different sequence types of carbapenem-resistant Klebsiella pneumoniae strains harboring blaNDM and 16S rRNAmethylase genes in Kerman hospitals, Iran, from 2015 to 2017. Infect Drug Resist 2019; 12:45.
49. Malekjamshidi MR, Zandi H, Eftekhar F. Prevalence of Extended-Spectrum β-lactamase and integron gene carriage in Multidrug-Resistant Klebsiella Species isolated from outpatients in Yazd, Iran. Iran. J Basic Med Sci 2020; 45(1):23.
50. Bandari NM, Zargar M, Keyvani H, et al. Antibiotic Resistance Among Klebsiella pneumoniae, Molecular Detection and Expression Level of blaKPC and blaGES Genes by Real-Time PCR. Jundishapur J Microbiol 2019; 12(10).
51. Solgi H, Badmasti F, Giske CG, et al. Molecular epidemiology of NDM-1-and OXA-48-producing Klebsiella pneumoniae in an Iranian hospital: clonal dissemination of ST11 and ST893. J Anti Microb Chemother 2018;73(6):1517-24.
52. Alizadeh N, Rezaee MA, Kafil HS, et al. Evaluation of resistance mechanisms in carbapenem-resistant Enterobacteriaceae. Infect Drug Resist 2020; 13:1377.
53. Fazeli H, Norouzi-Barough M, Ahadi A, et al. Detection of New Delhi Metallo-Beta-Lactamase-1 (NDM-1) in carbapenem-resistant Klebsiella pneumoniae isolated from a university hospital in Iran. Hippokratia 2015; 19(3):205.
54. Fallah F MHV, Goudarzi H, Hashemi A, et al. Identification of extended-spectrum-betalactamases(ESBLs), metallo-beta-lactamases (MBLs), Amp-C and KPC ß-lactamases among Klebsiella pneumoniae isolated from adults and pediatric patients in Iran. Afr J Microbiol Res 2013; 7(25):3254-61.
55. Hashemizadeh Z, Hosseinzadeh Z, Azimzadeh N, et al. Dissemination pattern of multidrug resistant carbapenemase producing Klebsiella pneumoniae isolates using pulsed-field gel electrophoresis in southwestern Iran. Infect. Drug Resist 2020; 13:921.
56. Khorvash F, Yazdani MR, Soudi AA, et al. Prevalence of acquired carbapenemase genes in Klebsiella pneumoniae by multiplex PCR in Isfahan. Adv Biomed Res 2017; 6.
57. Delarampour A, Ghalehnoo Z, Khademi F, et al. Molecular detection of carbapenem-resistant genes in clinical isolates of Klebsiella pneumoniae. Ann Ig 2019; 31(4):349-55.
58. Rajabnia R, Asgharpour F, Shahandashti EF, et al. Nosocomial emerging of (VIM1) carbapenemase-producing isolates of Klebsiella pneumoniae in North of Iran. Iran J Microbiol 2015; 7(2):88.
59. Hashemi A, Fallah F, Erfanimanesh S, et al. Detection of β-lactamases and outer membrane porins among Klebsiella pneumoniae strains isolated in Iran. Scientifica 2014.
60. Darabi N, Motazakker M, Khalkhali HR, et al. A multicenter study of β-lactamase-producing Klebsiella pneumoniae isolated from university teaching hospitals of Urmia, Iran. J Infect Dev Ctries 2019; 13(08):690-7.
61. DehghanBanadkouki A, Eslami G, Zandi H. The prevalence of carbapenemase producing Klebsiella pneumoniae Strains Isolated from clinical urine specimens in university teaching Hospitals, Iran. Int J Med Lab. 2017; 4(3):172-9.
62. Shaebani A, Ghanadian A, Ali GM. The prevalence of check NDM-1 gene causing beta-lactam antibiotic resistance in Kelebsiella pneumoniae isolates from clinical samples and plasmid curing. Pharm Sci 2016; 6(4): 2250-0480
63. Aghaei SS, Keykha M, Karami M, et al. Evaluation and Identification of Carbapenem Resistant Klebsiella pneumoniae Isolated from Hospitalized Patients in Qom City,(Iran). Qom UMSJ 2019; 13(4):39-47.
64. Bahmani N. Detection of VIM-1, VIM-2 and IMP-1 metallo-β-lactamase genes in Klebsiella pneumoniae isolated from clinical samples in Sanandaj, Kurdistan, west of Iran. Iran J Microbiol 2019; 11(3):225.
65. Shokri D. Evaluation of carbapenems resistance and frequency of Klebsiella pneumoniae carbapenemase (KPC) enzyme in Klebsiella pneumoniae strains isolated from clinical samples and determination of their acquired resistant profiles. J Ilam Uni Med Sci 2016; 24(3):18-30.
66. Eftekhar F, Naseh Z. Extended-spectrum β-lactamase and carbapenemase production among burn and non-burn clinical isolates of Klebsiella pneumoniae. Iran J Microbiol 2015; 7(3):144.
67. Ahmad Fs, zahra MS, Sajad Aha, et al. Prevalence of carbapenem-resistant Klebsiella pneumoniae in patients referred to Abadan Taleghani Hospital 2013-2014. Jundishapur J Microbiol 2015; 14(2).
68. Zare A, Akya A, Nejat P. The frequency of blaVIM, blaIMP, blaKPC and blaNDM Carbapenemase genes in clinical isolates of Klebsiella pneumoniae in Kermanshah medical centers j. shahidsadoghuni. Med Sci 2015; 23(8):760-9.
69. Zeighami H, Haghi F, Hajiahmadi F. Molecular characterization of integrons in clinical isolates of betalactamase-producing Escherichia coli and Klebsiella pneumoniae in Iran. J Chemother 2015; 27(3):145-51.
70. Nigro SJ, Hall RM. Structure and context of Acinetobacter transposons carrying the oxa23 carbapenemase gene. J Antimicrob Chemother 2016; 71(5):1135-47.
71. Berrazeg M, Diene S, Medjahed L, et al. New Delhi Metallo-beta-lactamase around the world: an eReview using Google Maps. Eurosurveillance 2014; 19(20):20809.
72. Bonomo RA. New Delhi metallo-β-lactamase and multidrug resistance: a global SOS? Clin Infect Dis 2011; 52(4):485-7.
73. Kitchel B, Rasheed JK, Patel JB, et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob. Agents Chemother 2009; 53(8):3365-70.
74. Munoz-Price LS, Poirel L, Bonomo RA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013; 13(9):785-96.
75. deJager P, Chirwa T, Naidoo S, et al. NooNDm-β-l--pG-nbiSAac-csPOA. Nosocomial outbreak of New Delhi metallo-β-lactamase-1-producing Gram-negative bacteria in South Africa: a case-control study. PLoS One 2015; 10(4):0123337.
76. Dash N, Panigrahi D, Zarouni MA, et al. High incidence of New Delhi metallo-beta-lactamase-producing Klebsiella pneumoniae isolates in Sharjah, United Arab Emirates. Microb Drug Resist 2014; 20(1):52-6.
77. Seiffert SN, Marschall J, Perreten V, et al. Emergence of Klebsiella pneumoniae co-producing NDM-1, OXA-48, CTX-M-15, CMY-16, QnrA and ArmA in Switzerland. Int. J Antimicrob Agents 2014; 44(3):260-2.
78. Chen Z, Wang Y, Tian L, et al. First report in China of Enterobacteriaceae clinical isolates coharboringbla NDM-1 and bla IMP-4 drug resistance genes. Microb Drug Resist 2015; 21(2):167-70.
79. Jean SS, Hsueh PR. High burden of antimicrobial resistance in Asia. Int J Antimicrob Agents 2011; 37(4):291-5.
80. Pfeifer Y, Wilharm G, Zander E, et al. Molecular characterization of bla NDM-1 in an Acinetobacterbaumannii strain isolated in Germany in 2007. J Antimicrob Chemother 2011; 66(9):1998-2001.
81. Thomas PW, Zheng M, Wu S, et al. Characterization of purified New Delhi metallo-β-lactamase-1. Biochem 2011; 50(46):10102-13.
82. Peirano G, Ahmed-Bentley J, Fuller J, et al. Travel-related carbapenemase-producing Gram-negative bacteria in Alberta, Canada: the first 3 years. J Clin Microbiol 2014; 52(5):1575-81.
83. Hishinuma A, Yoshida A, Suzuki H, et al. Complete sequencing of an IncFII NDM-1 plasmid in Klebsiella pneumoniae shows structural features shared with other multidrug resistance plasmids. J Antimicrob Chemother 2013; 68(10):2415-7.
84. Poirel L, Héritier C, Tolün V, et al. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004; 48(1):15-22.
85. Chen CM, Guo MK, Ke SC, et al. Emergence and nosocomial spread of ST11 carbapenem-resistant Klebsiella pneumoniae co-producing OXA-48 and KPC-2 in a regional hospital in Taiwan. J Med Microbiol 2018; 67(7):957-64.
86. Shibl A, Al-Agamy M, Memish Z, et al. The emergence of OXA-48-and NDM-1-positive Klebsiella pneumoniae in Riyadh, Saudi Arabia. Int J Infect Dis 2013; 17(12):1130-3.
87. Lee SH, Jeong SH, Cha SS. Screening for carbapenem-resistant Gram-negative bacteria Lancet Infect Dis 2006; 6(11):682-4.
Files
IssueVol 10 No 3-4 (2021) QRcode
SectionReview Articles
Keywords
carbapenem resistance Iran Klebsiella pneumoniae oxacillinase

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Moghadam M, Ghavidel M, Kooti S, Meshkat Z, Ghazvini K, Arian E, Farsiani H. Carbapenem-Resistance in Clinical Klebsiella pneumoniae Isolates from Iran, Review Article. J Med Bacteriol. 2021;10(3-4):51-65.