Original Articles

Antibiotics Resistance among Nosocomial Burkholderia cepacia Isolates Detected in Sebha, Libya


Background:      B. cepacia   complex  (Bcc) is an emerging pathogenic organism that can cause many nosocomial infections among hospitalized patients. Inadequate laboratory facilities for B. cepacia   complex detection and subsequently inappropriate treatment are considered a major cause for poor therapy outcomes. Methods:      This project was aimed to investigate phenotype production of ESBL, AmpC, and Carbapenemase among 47 B. cepacia   complex isolated from different Sebha health care facilities. Results:      Our data showed that 44.68% were ESBL producers, 57.44% were AmpC producers, while only 29.78% produced carbapenemase.  In this study, antibiotics susceptibility of Bcc isolates was variable, 100 % resistant to Ticarcillin/clavulanic acid, 85 % resistant to sulfamethoxazole-trimethoprim, 76 % resistant to Ticarcillin/clavulanic Chloramphenicol, 57 % to Ceftazidime, and 55 % to Tetracyclines, 44% to Ciprofloxacin and  31%  to Meropenem. Conclusion:      In conclusion,  this study shows that Bcc species have a higher resistance level attributed to several mechanisms. This high resistance needs careful antimicrobial prescribing regulations, and urgent implementation of infection prevention control is necessary.
1. Bevivino A, Dalmastri C, Tabacchioni S, et al.. Burkholderia cepacia complex bacteria from clinical and environmental sources in Italy: Genomovar status and distribution of traits related to virulence and transmissibility. J Clinical Microbiol 2002; 40(3):846–51.
2. Limmathurotsakul D, Paeyao A, Wongratanacheewin S, et al. Role of Burkholderia pseudomallei biofilm formation and lipopolysaccharide in relapse of melioidosis. Clin Microbiol Infect 2014; 20(11):O854–O856.
3. Limmathurotsakul D, Golding N, Dance DAB, et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nature Microbiol 2016; 1:15008.
4. Wiersinga WJ, Currie BJ, Peacock SJ, Meliodosis. N Engl J Med 2012. 367(11):1035-44.
5. Tadesse BT, Ashley EA, Ongarello S, et al., Antimicrobial resistance in Africa: a systematic review. BMC Infect Dis 2017; 17(1):616.
6. Crawford SE, Daum RS. Bacterial pneumonia, lung abscess, and empyema. Pediat Respir Med 2008; 501–53.
7. Caraher E, Duff C, Mullen T, et al. Invasion and biofilm formation of Burkholderia dolosa is comparable with Burkholderia cenocepacia and Burkholderia multivorans. J Cyst Fibros 2007; 6(1):49–56.
8. Mahenthiralingam E, Baldwin A, Vandamme P. Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol 2002; 51(7):533-8.
9. Godfrey AJ, Wong S, Dance DAB, et al. Pseudomonas pseudomallei resistance to β-lactam antibiotics due to alterations in the chromosomally encoded β-lactamase. Antimicrob. Agents Chemother 1991; 35(8):1635-40.
10. A. Maravić, M. Skočibušić, M. Šprung, I. Šamanić, J. Puizina, and M. Pavela-Vrančić, “Occurrence and antibiotic susceptibility profiles of Burkholderia cepacia complex in coastal marine environment. Int J Environ Health Res 2012; 22(6):531-42.
11. Papp-Wallace KM, Taracila MA, Gatta JA. Insights into β-Lactamases from Burkholderia species, two phylogenetically related yet distinct resistance determinants. J Biol Chem 2013; 288(26):19090.
12. Becka SA. et al., Characterization of the AmpC β-Lactamase from Burkholderia multivorans. Antimicrob Agents Chemother 2018; 62(10): e01140-18.
13. Sandle T. Burkholderia cepacia complex: review of origins, risks and test methodologies. Eur Pharm Rev 2018; 23(5):30–32.
14. USP Chapter 60 B. cepacia - Welcome to Q Laboratories.” https://www.qlaboratories.com /1118newsletter-usp60-bcepacia/(accessed Aug. 05, 2021).
15. Winn WC, Koneman EW. Koneman’s color atlas and textbook of diagnostic microbiology. Lippincott Williams & Wilkins, 2006.
16. CLSI, Performance Standards for Antimicrobial Susceptibility Testing. 30th ed.CLSI M100 ED30:2020. 2020.
17. Speert DP, Henry D, Vandamme P. Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 2002, 8(2):181–7.
18. VC Scoffone, LR Chiarelli, G Trespidi. Burkholderia cenocepacia Infections in cystic fibrosis patients: drug resistance and therapeutic approaches. Front Microbiol 2017; 22(8):1592.
19. Sousa SA, Ramos CG, Leitão JH. Burkholderia cepacia complex: emerging multihost pathogens equipped with a wide range of virulence factors and determinants. Int J Microbiol 2011; 2011:607575.
20. Smith SM, Eng RHK, Padberg FT. Survival of nosocomial pathogenic bacteria at ambient temperature. J Medicine 1996; 27(5–6):293–302.
21. LiPuma JJ, Dasen SE, Nielson DW, et al. Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 1990; 336(8723):1094-6.
22. Rhodes KA, Schweizer HP. Antibiotic resistance in Burkholderia species. Drug Resist Updat 2016; 28:82-90.
23. Rajyaguru JM, Muszynski MJ. Association of resistance to trimethoprim/sulphamethoxazole, chloramphenicol and quinolones with changes in major outer membrane proteins and lipopolysaccharide in Burkholderia cepacia. J Antimicrob. Chemother 1997; 40(6):803-9.
24. Zhou J, Chen Y, Tabibi S, et al. Antimicrobial susceptibility and synergy studies of Burkholderia cepacia complex isolated from patients with cystic fibrosis. J Antimicrob. Chemother 2007; 51(3):1085-8.
25. Thibault FM, Hernandez E, Vidal R. Antibiotic susceptibility of 65 isolates of Burkholderia pseudomallei and Burkholderia mallei to 35 antimicrobial agents. J Antimicrob. Chemother 2004; 54(6):1134-8.
26. Tseng SP, Tsai WC, Liang CY, et al. The contribution of antibiotic resistance mechanisms in clinical Burkholderia cepacia complex isolates: an emphasis on efflux pump activity. Plosone 2014; 9(8):e104986.
27. Avgeri SG, Matthaiou DK, Dimopoulos G, et al. Therapeutic options for Burkholderia cepacia infections beyond co-trimoxazole: a systematic review of the clinical evidence. Int. J. Antimicrob. Agents 2009; 33(5):394-404.
28. Viktorov DV, Zakharova IB, Podshivalova MV, et al., High-level resistance to fluoroquinolones and cephalosporins in Burkholderia pseudomallei and closely related species. Trans. R. Soc. Trop 2008; 102(Suppl 1, no. SUPPL.1): S103-10.
29. Pope CF, Gillespie SH, Pratten JR, et al. Fluoroquinolone-resistant mutants of Burkholdena cepacia. J Antimicrob. Chemother 2008; 52(3):1201-3.
30. Desai M, Bühler T, Weller PH, et al. Increasing resistance of planktonic and biofilm cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth. J Antimicrob. Chemother 1998; 42(2):153–160.
31. Wuthiekanun V, Amornchai P, Saiprom N, et al. Survey of antimicrobial resistance in clinical Burkholderia pseudomallei isolates over two decades in northeast Thailand. J Antimicrob. Chemother 2011; 55(11):5388.
32. Sarovich DS, Price EP, Limmathurotsakul D, et al. Development of ceftazidime resistance in an acute Burkholderia pseudomallei infection. Infect Drug Resist 2012; 5(1):129-132.
33. Jenney AW, Lum G, Fisher DA, et al. Antibiotic susceptibility of Burkholderia pseudomallei from tropical northern Australia and implications for therapy of melioidosis. Int. J. Antimicrob. Agents 2001; 17(2):109-113.
IssueVol 11 No 1-2 (2023) QRcode
SectionOriginal Articles
Burkholderia cepacia complex AMR ESBL AmpC Carbapenemase

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Saad Shamsi S, Ahmad K, Elzen A. Antibiotics Resistance among Nosocomial Burkholderia cepacia Isolates Detected in Sebha, Libya. J Med Bacteriol. 2023;11(1-2):11-18.