Lucilia sericata Maggot Extract: A Promising Tool against Biofilms of Antimicrobial Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa
Abstract
Background: This study explores the impact of Lucilia sericata maggots on the development and eradication of biofilms created by the pathogenic bacteria, Staphylococcus aureus and Pseudomonas aeruginosa.
Methods: We assessed the influence of Lucilia sericata maggot extract on the viability of planktonic bacteria, the formation and disruption of biofilms, bacterial metabolic activity. Also the effect of simultaneous ES-antibiotic treatment in biofilm elimination was investigated. Additionally, the expression levels of genes associated with biofilm formation, namely LasI, psLA, agrA, and icaD was studied.
Results: The results showed that ES can reduce the viability of planktonic S. aureus, significantly. Furthermore, ES of larvae fed on S. aureus-infected meat displayed the most substantial inhibition of biofilm formation (62.11% and 75.04% inhibition for S. aureus and P. aeruginosa, respectively). A similar trend was observed in biofilm destruction, with values of 56.67% and 68.50% inhibition for S. aureus and P. aeruginosa, respectively. The simultaneous application of ES of larvae that fed on S. aureus-infected meat and the minimum inhibitory concentration (MIC) of gentamicin resulted in 100% inhibition of biofilm formation by S. aureus. Notably, the group treated with ES of larvae fed on S. aureus-infected meat exhibited the most significant reduction in metabolic activity, with values of 95.03% and 68.25% for S. aureus and P. aeruginosa, respectively. The expression of LAsI and pslA genes in P. aeruginosa and the expression of agrA and icaD genes in S. aureus has decreased
Conclusion: The findings of this study demonstrate that maggot extract has not only impacted the formation, but also eliminated the biofilms of S. aureus and P. aeruginosa.
2. Bauer A. Antibiotic susceptibility testing by a standardized single disc method. Am J clin pathol 1966; 45:149-58.
3. Andrews JM. Determination of minimum inhibitory concentrations. J antimicrobial Chemotherapy 2001; 48(suppl_1):5-16.
4. O'Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 1998; 28(3):449-61.
5. Bohova J, Majtan J, Majtan V, et al. Selective antibiofilm effects of Lucilia sericata larvae secretions/excretions against wound pathogens. J Evid-Based Complementary Altern Med 2014; 2014.
6. Hassanshahiyan M, Saadatfar A, Masoumi F. Antimicrobial properties of Hyssopus officinalis extract against antibiotic-resistant bacteria in planktonic and biofilm form. Biological J Microorganism 2018; 7(28):91-101.
7. Ramage G, López-Rib JL. Techniques for antifungal susceptibility testing of Candida albicans biofilms. Methods Mol Med 2005; 118:71-9.
8. Dumas JL, Van Delden C, Perron K, et al. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS microbiol Lett 2006; 254(2):217-25.
9. Zhao G, Usui ML, Lippman SI, et al. Biofilms and inflammation in chronic wounds. Advances in wound care 2013; 2(7):389-99.
10. Wang B, Yao Y, Wei P, et al. Housefly Phormicin inhibits Staphylococcus aureus and MRSA by disrupting biofilm formation and altering gene expression in vitro and in vivo. Int J Biol Macromol 2021; 167:1424-34.
11. Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance & Infection Control 2019; 8(1):1-10.
12. Kaihanfar M, Momeni-Moghaddam M, Hajar T, et al. Investigation of antimicrobial effects of treated Lucilia sericata larvae extract on bacteria. Iranian J Microbiology 2018; 10(6):409.
13. James GA, Swogger E, Wolcott R,et al. Biofilms in chronic wounds. Wound Repair Regen 2008; 16(1):37-44.
14. Gjødsbøl K, Christensen JJ, Karlsmark T, et al. Multiple bacterial species reside in chronic wounds: a longitudinal study. International wound J 2006; 3(3):225-31.
15. Percival SL, Thomas JG, Williams DW. Biofilms and bacterial imbalances in chronic wounds: anti‐Koch. International wound J 2010; 7(3):169-75.
16. Kawabata T, Mitsui H, Yokota K, et al. Induction of antibacterial activity in larvae of the blowfly Lucilia sericata by an infected environment. Medical and veterinary entomology 2010; 24(4):375-81.
17. Jaklič D, Lapanje A, Zupančič K, et al. Selective antimicrobial activity of maggots against pathogenic bacteria. J Medical Microbiology 2008; 57(5):617-25.
18. Becerikli M, Wallner C, Dadras M, et al. Maggot extract interrupts bacterial biofilm formation and maturation in combination with antibiotics by reducing the expression of virulence genes. Life J 2022; 12(2):237.
19. Fonseca-Muñoz A, Pérez-Pacheco R, Ortega-Morales BO, et al. Bactericidal activity of Chrysomya rufifacies and Cochliomyia macellaria (Diptera: Calliphoridae) Larval excretions–secretions against Staphylococcus aureus (Bacillales: Staphylococcaceae). J Medical Entomology 2019; 56(6):1598-604.
20. Teh CH, Nazni WA, Nurulhusna AH, et al. Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. BMC Microbiol 2017; 17(1):1-8.
21. Elmorsy RH, Bream AS, Abdel-Samad MR. Antibacterial activities of Chrysomya albiceps Maggots’ Extracts (Diptera: Calliphoridae). Egypt Acad J Biol Sci 2020; 13(1):99-104.
22. S Amer M, I Hasaballah A, M Hammad K, et al. Antimicrobial and antiviral activity of maggots extracts of Lucilia sericata (Diptera: Calliphoridae). Egyptian J Aquatic Biology and Fisheries 2019; 23(4):51-64.
23. Bexfield A, Bond AE, Roberts EC, et al. The antibacterial activity against MRSA strains and other bacteria of a< 500 Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera: Calliphoridae). Microbes Infect 2008; 10(4):325-33.
24. Huberman L, Gollop N, Mumcuoglu K, et al. Antibacterial properties of whole body extracts and haemolymph of Lucilia sericata maggots. J wound care 2007; 16(3):123-7.
25. Kerridge A, Lappin‐Scott H, Stevens J. Antibacterial properties of larval secretions of the blowfly, Lucilia sericata. Med Vet Entomol 2005; 19(3):333-7.
26. Malekian A, Djavid GE, Akbarzadeh K, et al. Efficacy of maggot therapy on Staphylococcus aureus and Pseudomonas aeruginosa in diabetic foot ulcers: a randomized controlled trial. J Wound Ostomy & Continence Nursing 2019; 46(1):25-9.
27. Zhang Z, Wang J, Zhang B, et al. Activity of antibacterial protein from maggots against Staphylococcus aureus in vitro and in vivo. International J molecular medicine 2013; 31(5):1159-65.
28. Cazander G, Pawiroredjo JS, Vandenbroucke‐Grauls CM, et al. Synergism between maggot excretions and antibiotics. Wound repair and regeneration 2010; 18(6):637-42.
29. Barnes KM, Dixon RA, Gennard DE. The antibacterial potency of the medicinal maggot, Lucilia sericata (Meigen): variation in laboratory evaluation. J Microbiol Methods 2010; 82(3):234-7.
30. Pöppel A-K, Vogel H, Wiesner J, et al. Antimicrobial peptides expressed in medicinal maggots of the blow fly Lucilia sericata show combinatorial activity against bacteria. Antimicrob Agents Chemother 2015; 59(5):2508-14.
31. Sig AK, Ozgur K, Engin A. Investigation of whole body extract metabolites of Lucilia sericata larvae and potential antibacterial effects. Turkish J Clinics and Laboratory 2018; 9(3):191-8.
32. Barnes KM, Gennard DE, Dixon RA. An assessment of the antibacterial activity in larval excretion/secretion of four species of insects recorded in association with corpses, using Lucilia sericata Meigen as the marker species. Bull Entomol Res 2010; 100(6):635-40.
33. Zare H, Jadidi K, Farnoosh G, et al. Evaluation of excreta/secreta of Lucilia sericata larvae as a new antibacterial candidate for treatment of MRSA ocular infection. Biointerface Res Appl Chem 2022; 12(4):5638-46.
34. Van der Plas MJ, Jukema GN, Wai SW, et al. Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. J Antimicrob Chemother 2008; 61(1):117-22.
35. Chernysh S, Gordya N, Tulin D, Yakovlev A. Biofilm infections between Scylla and Charybdis: interplay of host antimicrobial eptides and antibiotics. Infect Drug Resist 2018; 11:501.
36. Cazander G, van Veen KE, Bouwman LH, et al. The influence of maggot excretions on PAO1 biofilm formation on different biomaterials. Clin Ortho Relat Res 2009; 467(2):536-45.
37. Liu J, Jiang J, Zong J, et al. Antibacterial and anti-biofilm effects of fatty acids extract of dried Lucilia sericata larvae against Staphylococcus aureus and Streptococcus pneumoniae in vitro. Nat Prod Res 2021; 35(10):1702-5.
38. van der Plas MJ, Dambrot C, Dogterom-Ballering HC, et al. Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom. J Antimicrob Chemother 2010; 65(5):917-23.
39. Harris LG, Nigam Y, Sawyer J, et al. Lucilia sericata chymotrypsin disrupts protein adhesin-mediated staphylococcal biofilm formation. Appl Env Microbiol 2013; 79(4):1393-5.
40. Feldman MB, Terry DS, Altman RB, et al. Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat Chem Biol 2010; 6(1):54-62.
41. Arora S, Baptista C, Lim CS. Maggot metabolites and their combinatory effects with antibiotic on Staphylococcus aureus. Ann Clin Microbiol Antimicrob 2011; 10(1):1-8.
42. Andersen A, Joergensen B, Bjarnsholt T, et al. Quorum-sensing-regulated virulence factors in Pseudomonas aeruginosa are toxic to Lucilia sericata maggots. Microbiol J 2010; 156(Pt 2):400.
43. Li H, Li X, Wang Z, et al. Autoinducer-2 regulates Pseudomonas aeruginosa PAO1 biofilm formation and virulence production in a dose-dependent manner. BMC Microbiol 2015; 15(1):1-8.
44. Lee J-H, Park J-H, Cho HS, et al. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling 2013; 29(5):491-9.
45. Otani S, Hiramatsu K, Hashinaga K, et al. Sub-minimum inhibitory concentrations of ceftazidime inhibit Pseudomonas aeruginosa biofilm formation. J Infect Chemother 2018; 24(6):428-33.
46. Ryder C, Byrd M, Wozniak DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 2007; 10(6):644-8.
47. Omidi M, Firoozeh F, Saffari M, et al. Ability of biofilm production and molecular analysis of spa and ica genes among clinical isolates of methicillin-resistant Staphylococcus aureus. BMC Res Notes 2020; 13(1):1-7.
48. Zhang Y, Sass A, Van Acker H, et al. Coumarin reduces virulence and biofilm formation in Pseudomonas aeruginosa by affecting quorum sensing, type III secretion and C-di-GMP levels. Front Microbiol 2018; 9:1952.
49. van der Plas MJ. Maggot therapy´ s modes of action: effect of maggot secretions on microbiological, haematological and immunological processes: J. Antimicrob. Chemother 2008; 61:117-22.
Files | ||
Issue | Vol 12 No 1 (2024) | |
Section | Original Articles | |
DOI | https://doi.org/10.18502/jmb.v12i1.15020 | |
Keywords | ||
Antimicrobial resistance Biofilm Lucilia sericata Pseudomonas aeruginosa Staphylococcus aureus. |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |