Biofilm Formation by Quorum Sensing and Manners to Deal It
Abstract
Relationship between microorganisms with chemical signals is called quorum sensing (QS). This process has been found in most microorganisms (gram negative and gram positive bacteria and also fungi). QS is required for different activities of microorganisms such as, virulence factor secretion, motility, competence, biofilm and sporulation. There are different molecules as signals in disparate microorganisms. Biofilm formation is one of the significant functions of QS. Biofilms are groups of microorganisms that are tied to a surface (biotic or abiotic). One of the remarkable roles of biofilm is creation persistent bacteria. Biofilm formed in most of pathogen microorganisms and play the main role in their pathogenicity. Many studies had been done about QS, biofilm formation and ways against biofilm formation. These studies could help to the removal of microorganisms that formed biofilm. Here we describe QS and biofilm formation in some important microorganisms and suggested ways to eradicating biofilm formation of them.
2. Zhang W, Li C. Exploiting quorum sensing interfering strategies in gram-negative bacteria for the enhancement of environmental applications. Front Microbiol 2015; 6:1535.
3. Chan KG, Liu YC, Chang C. Inhibiting N-acyl-homoserine lactone synthesis and quenching Pseudomonas quinolone quorum sensing to attenuate virulence. Front Microbiol 2015; 6: 1173.
4. Le KY, Otto M. Quorum-sensing regulation in staphylococci-an overview. Front Microbiol 2015; 6: 1174.
5. Leung V, Dufour D, Lévesque CM, Death and survival in Streptococcus mutans: differing outcomes of a quorum-sensing signaling peptide. Front Microbiol 2015; 6:1176.
6. Ta CAK, Arnason JTJM. Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules 2015; 21(1):E29.
7. Castillo-Juárez I., Maeda T, Mandujano-Tinoco EA, et al., Role of quorum sensing in bacterial infections. World J Clin Cases 2015; 3(7):575-98.
8. Yada S, Kamalesh B, Sonwaneet S, et al. Quorum sensing inhibition, relevance to periodontics. J Int Oral Health 2015; 7(1):67-9.
9. Popat, R., et al., Collective sensing and collective responses in quorum-sensing bacteria. 2015. 12(103): p. 20140882.
10. Fazli M, Almblad H, Rybtke ML, et al. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol 2014; 16(7):1961-81.
11. Wolska, KI, Grudniak AM, Rudnicka Z, et al. Genetic control of bacterial biofilms. J Appl Genet 2016; 57:225-38.
12. Cude WN, Buchan A. Acyl-homoserine lactone-based quorum sensing in the Roseobacter clade: complex cell-to-cell communication controls multiple physiologies. Front Microbiol 2013; 12:4:336.
13. Pichlmaier M, Marwitz V, Kühn C, et al., High prevalence of asymptomatic bacterial colonization of rhythm management devices. Europace 2008; 10(9): 1067-72.
14. Scutera S, Zucca M, Savoia D. Novel approaches for the design and discovery of quorum-sensing inhibitors. Expert Opin Drug Discov 2014; 9(4):353-66.
15. Liu, YC, Chan KG, Chang CY. Modulation of host biology by Pseudomonas aeruginosa quorum sensing signal molecules: messengers or traitors. Front Microbiol 2015; 9:6:1226.
16. Nazzaro F, Fratianni F, Coppola R. Quorum sensing and phytochemicals. Int J Mol Sci 2013; 14(6):12607-19.
17. Marques CN, Davies DG, Sauer KJP. Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals (Basel) 2015; 8(4):816-35.
18. Leung V, Lévesque CM. A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. J Bacteriol 2012; 194(9): 2265-74.
19. Que YA, Hazan R, Strobel B, et al., A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria. PLoS One 2013; 8(12):e80140.
20. Möker N, Dean CR, Tao J. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol 2010; 192(7):1946-55.
21. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015; 6(1):26-41.
22. Azam MW, Khan AU. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today 2019; 24(1):350-9.
23. Cocotl-Yañez M, Soto-Aceves MP, González-Valdez A, et al. Virulence factors regulation by the quorum-sensing and Rsm systems in the marine strain Pseudomonas aeruginosa ID4365, a natural mutant in lasR. FEMS Microbiol Lett 2020; 367(12):fnaa092.
24. Reichhardt C, Wong C, da Silva DP, et al. CdrA interactions within the Pseudomonas aeruginosa biofilm matrix safeguard it from proteolysis and promote cellular packing. MBio 2018; 9(5):e01376-1825.
25. Papaioannou E., Utari PD, Quax W. Choosing an appropriate infection model to study quorum sensing inhibition in Pseudomonas infections. Int J Mol Sci 2013; 14(9): 19309-340.
26. Kazemian H, Ghafourian S, Heidari H, et al. Antibacterial, anti-swarming and anti-biofilm formation activities of Chamaemelum nobile against Pseudomonas aeruginosa. Rev Soc Bras Med Trop 2015; 48(4):432-6.
27. Soković M, Ćirić A, Glamočlija J, et al. Agaricus blazei hot water extract shows anti quorum sensing activity in the nosocomial human pathogen Pseudomonas aeruginosa. Molecules 2014; 19(4):4189-99.
28. Vandeputte OM, Kiendrebeogo M, Rajaonson S, et al. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2010; 76(1):243-53.
29. Mostafa I, Abbas HA, Ashour ML, et al., Polyphenols from Salix tetrasperma impair virulence and inhibit Quorum sensing of Pseudomonas aeruginosa. Molecules 2020; 25(6):1341.
30. Onsare JG, Arora DS. Antibiofilm potential of flavonoids extracted from Moringa oleifera seed coat against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans J Appl Microbiol 2015; 118(2): 313-325.
31. Wang M, Zhao L, Wu H, et al., Cladodionen is a potential quorum sensing inhibitor against Pseudomonas aeruginosa 2020; 18(4):205.
32. Başaran TI, Berber D, Gökalsın B, et al. Extremophilic Natrinema versiforme Against Pseudomonas aeruginosa quorum sensing and biofilm. Front Microbiol 2020 11:79.
33. Ahmed, T, Pattnaik S, Khanet MB, et al. Inhibition of quorum sensing–associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1 by Mycoleptodiscus indicus PUTY1. Braz J Microbiol 2020; 51(2):467-87.
34. Shommu NS, Vogel HJ, Storey DG, et al. Potential of metabolomics to reveal Burkholderia cepacia complex pathogenesis and antibiotic resistance. Front Microbiol 2015; 6:668.
35. Suppiger A, Schmid N, Aguilar C, et al., Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Virulence 2013; 4(5):400-9.
36. Scoffone VC, Chiarelli LR, Makarov V, et al, Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo. Sci Rep 2016; 6:32487.
37. Huber B, Riedel K, Hentzer M, et al., The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 2001; 147(9): 2517-28.
38. Huber B, Eberl L, Feucht W, et al. Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Z Naturforsch C J Biosci 2003; 58(11-12):879-84.
39. Brackman G, Cos P, Maes L, et al. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 2011; 55(6):2655-61.
40. Nayak DN, Savalia CV, Kalyani IH, et al., Isolation, identification, and characterization of Listeria spp. from various animal origin foods. Vet World 2015; 8(6):695.
41. Garmyn D, Gal L, Briandet R, et al, Evidence of autoinduction heterogeneity via expression of the Agr system of Listeria monocytogenes at the single-cell level. Appl Environ Microbiol 2011; 77(17):6286-9.
42. Garmyn D, Gal L, Lemaitre JP, et al., Communication and autoinduction in the species Listeria monocytogenes: A central role for the agr system. Commun Integr Biol 2009; 2(4): 371-4.
43. Nguyen UT, Harvey H, Hogan AJ, et al., Role of PBPD1 in stimulation of Listeria monocytogenes biofilm formation by subminimal inhibitory β-lactam concentrations. Antimicrob Agents Chemother 2014; 58(11): 6508-17.
44. Belval SC, Gal L, Margiewes S, et al., Assessment of the roles of LuxS, S-ribosyl homocysteine, and autoinducer 2 in cell attachment during biofilm formation by Listeria monocytogenes EGD-e. Appl Environ Microbiol 2006; 72(4):2644-50.
45. Khan F, Javaid A, Kim YM. Functional diversity of quorum sensing receptors in pathogenic bacteria: Interspecies, intraspecies and interkingdom level. Curr Drug Targets 2019; 20(6):655-67.
46. Nguyen UT, Wenderska IB, Chong MA, et al. Small-molecule modulators of Listeria monocytogenes biofilm development. Appl Environ Microbiol 2012; 78(5):1454-65.
47. Wei LN, Shi CZ, Luo CX, et al. Phloretin inhibits biofilm formation by affecting quorum sensing under different temperature. LWT-Food Sci Technol 2020; 131:109668.
48. Wang J, Chu R, Li L, et al. Decrease of microbial community diversity, biogenic amines formation, and lipid oxidation by phloretin in Atlantic salmon fillets. Food Sci Anim Resour 2019; 101:419-26.
49. Ganji M, Ruiz J, Kogler W, et al. Methicillin-resistant Staphylococcus aureus pericarditis causing cardiac tamponade. Case Reports 2019; 18:e00613.
50. Naber CK. Staphylococcus aureus bacteremia: epidemiology, pathophysiology, and management strategies. Clin Infect Dis 2009; 48(Supplement_4):S231-S237.
51. McCarthy H, Rudkin JK, Black NS, et al. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol 2015; 5:1.
52. Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 2008; 4(4):e1000052.
53. Horswill AR. Gordon CP. Structure–Activity Relationship Studies of Small Molecule Modulators of the Staphylococcal Accessory Gene Regulator. J Med Chem 2019; 63(6):2705-30.
54. Chen Q, Xie S, Lou X, et al. Biofilm formation and prevalence of adhesion genes among Staphylococcus aureus isolates from different food sources. Microbiologyopen 2020; 9(1):e00946.
55. Hogan S, Zapotoczna M, Stevens NT, et al. Potential use of targeted enzymatic agents in the treatment of Staphylococcus aureus biofilm-related infections. J Hosp Infect 2017; 96(2):177-82.
56. Zapotoczna M, O’Neill E, O'Gara JP. Untangling the diverse and redundant mechanisms of Staphylococcus aureus biofilm formation. PLoS Pathog 2016; 12(7):e1005671.
57. Dotto C, Serrat AL, Cattelan N, et al. The active component of aspirin, salicylic acid, promotes Staphylococcus aureus biofilm formation in a PIA-dependent manner. Front Microbiol 2017; 8:4.
58. Kırmusaoğlu S. S. aureus, and S. Enany, Ed, MRSA and MSSA: The mechanism of methicillin resistance and the influence of methicillin resistance on biofilm phenotype of Staphylococcus aureus. IntechOpen 2017:25-41.
59. Baldry M, Kitir B, Frøkiær H, et al., The agr inhibitors solonamide B and analogues alter immune responses to Staphylococccus aureus but do not exhibit adverse effects on immune cell functions. PLoS One 2016; 11(1):e0145618.
60. Nan L, Yang K, Ren G, et al., Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus. Mater Sci Eng C Mater Biol Appl 2015; 51:356-61.
61. Zhao G, Zhong H, Zhang M, et al., Effects of antimicrobial peptides on Staphylococcus aureus growth and biofilm formation in vitro following isolation from implant-associated infections. Int J Clin Exp Med 2015; 8(1):1546.
62. Ismaeil AS, Saleh FA. Sumac (Rhus coriaria L) as quorum sensing inhibitors in Staphylococcus aureus. J Pure Appl Microbiol 2019; 13(4): 2397-404
63. Borges A, Ferreira C, Saavedra MJ, et al. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist 2013; 19(4):256-65.
64. Alenzi FQ. Virulence factors of Candida species isolated from patients with urinary tract infection and obstructive uropathy. Pak J Med Sci 2016; 32(1):143-6
65. Mayer FL, Wilson D, Hube BJV. Candida albicans pathogenicity mechanisms. Virulence 2013; 4(2):119-28.
66. Costa ACBP, Back-Brito GN, Mayer FL, et al. Candida albicans Mrv8, is involved in epithelial damage and biofilm formation. FEMS Yeast Res 2020; 20(5):foaa033.
67. McCall AD, Pathirana RU, Prabhakar A, et al. Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. NPJ Biofilms Microbiomes 2019; 5(1):1-12.
68. Deveau A, Hogan DA. Linking quorum sensing regulation and biofilm formation by Candida albicans, in Quorum Sensing. Methods Mol Biol 2011; 692:219-33.
69. Mathé L, Dijck V. Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet 2013; 59(4):251-64.
70. Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect 2016; 18(5):310-321.
71. Freire F, de Barros PP, Pereira CA, et al. Photodynamic inactivation in the expression of the Candida albicans genes ALS3, HWP1, BCR1, TEC1, CPH1, and EFG1 in biofilms. Lasers Med Sci 2018; 33(7):1447-54.
72. de Barros PP, Rossoni RD, Ribeiro FDC, et al. Temporal profile of biofilm formation, gene expression and virulence analysis in Candida albicans strains. Mycopathologia 2017; 182(3-4):285-295.
73. Cheng G, Wozniak K, Wallig MA, et al. Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun 2005; 73(3):1656-63.
74. Azevedo MM, Almeida CA, Chaves FCM, et al., 7-hydroxycalamenene effects on secreted aspartic proteases activity and biofilm formation of Candida spp. Pharmacogn Mag 2016; 12(45):36-40.
75. Lara HH, Romero-Urbina DG, Pierce C, et al. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnology 2015; 13(1):1-12.
76. Yan Y, Tan F, Miao H, et al. Effect of shikonin against Candida albicans biofilms. Front Microbiol 2019; 10:1085.
Files | ||
Issue | Vol 12 No 2 (2024) | |
Section | Review Articles | |
DOI | https://doi.org/10.18502/jmb.v12i2.15626 | |
Keywords | ||
Quorum Sensing Biofilm Formation Pseudomonas aeruginosa Listeria monocytogenes Burkholderia cepacia Staphylococcus aureus |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |