Immune system responses against Mycobacterium tuberculosis and its mechanisms to escape from the immune system
Abstract
Mycobacterium tuberculosis (MTB) employs a variety of strategies to evade the host immune response, enabling its persistence and the development of tuberculosis. These evasion tactics involve thwarting lysosome formation, manipulating intracellular pH, and disrupting apoptosis and autophagy processes within host cells. Specifically, MTB interferes with lysosome acidification by modulating calcium ions (Ca2+), iron ions, and hydrogen ions (H+), creating an optimal environment for its survival within host cells. Furthermore, MTB inhibits host cell apoptosis and autophagy, critical defense mechanisms against intracellular pathogens. Understanding these immunological escape mechanisms is paramount for developing effective tuberculosis therapies. Future research should focus on targeting MTB evasion strategies to pave the way for innovative tuberculosis treatments.
2. Wang C, Peyron P, Mestre O, Kaplan G, Van Soolingen D, Gao Q, et al. Innate immune response to Mycobacterium tuberculosis Beijing and other genotypes. PloS one. 2010;5(10):e13594.
3. Zhai W, Wu F, Zhang Y, Fu Y, Liu Z. The immune escape mechanisms of Mycobacterium tuberculosis. International journal of molecular sciences. 2019;20(2):340.
4. Nahid P, Jarlsberg L, Kato-Maeda M, Segal M, Osmond D, Gagneux S, et al. Interplay of strain and race/ethnicity in the innate immune response to M. tuberculosis. PloS one. 2018;13(5):e0195392.
5. Ferluga J, Yasmin H, Al-Ahdal MN, Bhakta S, Kishore U. Natural and trained innate immunity against Mycobacterium tuberculosis. Immunobiology. 2020;225(3):151951.
6. Khan N, Vidyarthi A, Pahari S, Agrewala JN. Distinct strategies employed by dendritic cells and macrophages in restricting Mycobacterium tuberculosis infection: different philosophies but same desire. International reviews of immunology. 2016;35(5):386-98.
7. Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cellular & molecular immunology. 2017;14(12):963-75.
8. Mortaz E, Adcock IM, Tabarsi P, Masjedi MR, Mansouri D, Velayati AA, et al. Interaction of pattern recognition receptors with Mycobacterium tuberculosis. Journal of clinical immunology. 2015;35(1):1-10.
9. Sia JK, Rengarajan J. Immunology of Mycobacterium tuberculosis infections. Microbiology spectrum. 2019;7(4):7.4. 6.
10. Natarajan K, Kundu M, Sharma P, Basu J. Innate immune responses to M. tuberculosis infection. Tuberculosis. 2011;91(5):427-31.
11. Guirado E, Schlesinger LS, Kaplan G, editors. Macrophages in tuberculosis: friend or foe. Seminars in immunopathology; 2013: Springer.
12. Yoshikai Y. Immunological protection against Mycobacterium tuberculosis infection. Tanpakushitsu kakusan koso Protein, nucleic acid, enzyme. 2009;54(8 Suppl):1014-9.
13. Lam A, Prabhu R, Gross CM, Riesenberg LA, Singh V, Aggarwal S. Role of apoptosis and autophagy in tuberculosis. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2017;313(2):L218-L29.
14. Silwal P, Kim JK, Yuk J-M, Jo E-K. AMP-activated protein kinase and host defense against infection. International journal of molecular sciences. 2018;19(11):3495.
15. Schorey JS, Schlesinger LS. Innate immune responses to tuberculosis. Microbiology Spectrum. 2016;4(6):4.6. 31.
16. Shen P, Li Q, Ma J, Tian M, Hong F, Zhai X, et al. IRAK-M alters the polarity of macrophages to facilitate the survival of Mycobacterium tuberculosis. BMC microbiology. 2017;17(1):1-11.
17. Allen M, Bailey C, Cahatol I, Dodge L, Yim J, Kassissa C, et al. Mechanisms of control of Mycobacterium tuberculosis by NK cells: role of glutathione. Frontiers in Immunology. 2015;6:508.
18. Mihret A. The role of dendritic cells in Mycobacterium tuberculosis infection. Virulence. 2012;3(7):654-9.
19. Hilda JN, Das S, Tripathy SP, Hanna LE. Role of neutrophils in tuberculosis: a bird's eye view. Innate immunity. 2020;26(4):240-7.
20. Borkute RR, Woelke S, Pei G, Dorhoi A. Neutrophils in tuberculosis: Cell biology, cellular networking and multitasking in host defense. International Journal of Molecular Sciences. 2021;22(9):4801.
21. Muefong CN, Sutherland JS. Neutrophils in tuberculosis-associated inflammation and lung pathology. Frontiers in immunology. 2020;11:962.
22. Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. The Journal of experimental medicine. 2008;205(1):105-15.
23. De Martino M, Lodi L, Galli L, Chiappini E. Immune response to Mycobacterium tuberculosis: a narrative review. Frontiers in pediatrics. 2019;7:350.
24. Bekale RB, Du Plessis S-M, Hsu N-J, Sharma JR, Sampson SL, Jacobs M, et al. Mycobacterium tuberculosis and interactions with the host immune system: Opportunities for nanoparticle based immunotherapeutics and vaccines. Pharmaceutical research. 2019;36(1):1-15.
25. Jagatia H, Tsolaki AG. The role of complement system and the immune response to tuberculosis infection. Medicina. 2021;57(2):84.
26. Bénard A, Sakwa I, Schierloh P, Colom A, Mercier I, Tailleux L, et al. B cells producing type I IFN modulate macrophage polarization in tuberculosis. American journal of respiratory and critical care medicine. 2018;197(6):801-13.
27. Winslow GM, Cooper A, Reiley W, Chatterjee M, Woodland DL. Early T‐cell responses in tuberculosis immunity. Immunological reviews. 2008;225(1):284-99.
28. Tian Y, Hao Y, Dong M, Li S, Wang D, Jiang F, et al. Development of a Monoclonal Antibody to Pig CD69 Reveals Early Activation of T Cells in Pig after PRRSV and ASFV Infection. Viruses. 2022;14(6):1343.
29. Leemans JC, Florquin S, Heikens M, Pals ST, van der Neut R, Van Der Poll T. CD44 is a macrophage binding site for Mycobacterium tuberculosis that mediates macrophage recruitment and protective immunity against tuberculosis. The Journal of clinical investigation. 2003;111(5):681-9.
30. Rohde K, Yates RM, Purdy GE, Russell DG. Mycobacterium tuberculosis and the environment within the phagosome. Immunological reviews. 2007;219(1):37-54.
31. Schüller S, Neefjes J, Ottenhoff T, Thole J, Young D. Coronin is involved in uptake of Mycobacterium bovis BCG in human macrophages but not in phagosome maintenance. Cellular microbiology. 2001;3(12):785-93.
32. Flynn JL, Chan J. Immune evasion by Mycobacterium tuberculosis: living with the enemy. Current opinion in immunology. 2003;15(4):450-5.
33. Ma J, Yang B, Yu S, Zhang Y, Zhang X, Lao S, et al. Tuberculosis antigen‐induced expression of IFN‐α in tuberculosis patients inhibits production of IL‐1β. The FASEB Journal. 2014;28(7):3238-48.
34. Wong D, Chao JD, Av-Gay Y. Mycobacterium tuberculosis-secreted phosphatases: from pathogenesis to targets for TB drug development. Trends in microbiology. 2013;21(2):100-9.
35. Sajid A, Arora G, Singhal A, Kalia VC, Singh Y. Protein phosphatases of pathogenic bacteria: role in physiology and virulence. Annu Rev Microbiol. 2015;69(527):47.
36. Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, et al. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science. 2004;304(5678):1800-4.
37. Gutierrez MG, Mishra BB, Jordao L, Elliott E, Anes E, Griffiths G. NF-κB activation controls phagolysosome fusion-mediated killing of mycobacteria by macrophages. The Journal of Immunology. 2008;181(4):2651-63.
38. Pandey AK, Sassetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proceedings of the National Academy of Sciences. 2008;105(11):4376-80.
39. Vergne I, Chua J, Deretic V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. The Journal of experimental medicine. 2003;198(4):653-9.
40. Naeem MA, Ahmad W, Tyagi R, Akram Q, Younus M, Liu X. Stealth strategies of Mycobacterium tuberculosis for immune evasion. Current Issues in Molecular Biology. 2021;41(1):597-616.
41. Tailleux L, Schwartz O, Herrmann J-L, Pivert E, Jackson M, Amara A, et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. The Journal of experimental medicine. 2003;197(1):121-7.
42. Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. The Journal of experimental medicine. 2003;197(1):7-17.
43. Jamwal SV, Mehrotra P, Singh A, Siddiqui Z, Basu A, Rao KV. Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism. Scientific reports. 2016;6(1):1-9.
44. Chai Q, Wang L, Liu CH, Ge B. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cellular & molecular immunology. 2020;17(9):901-13.
45. Chen Z, Wang T, Liu Z, Zhang G, Wang J, Feng S, et al. Inhibition of autophagy by MiR-30A induced by mycobacteria tuberculosis as a possible mechanism of immune escape in human macrophages. Japanese journal of infectious diseases. 2015;68(5):420-4.
46. Wong D, Li W, Chao JD, Zhou P, Narula G, Tsui C, et al. Protein tyrosine kinase, PtkA, is required for Mycobacterium tuberculosis growth in macrophages. Scientific reports. 2018;8(1):1-12.
47. Queval CJ, Song O-R, Carralot J-P, Saliou J-M, Bongiovanni A, Deloison G, et al. Mycobacterium tuberculosis controls phagosomal acidification by targeting CISH-mediated signaling. Cell reports. 2017;20(13):3188-98.
48. MacMicking JD, Taylor GA, McKinney JD. Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science. 2003;302(5645):654-9.
49. Sharp JD, Singh AK, Park ST, Lyubetskaya A, Peterson MW, Gomes AL, et al. Comprehensive definition of the SigH regulon of Mycobacterium tuberculosis reveals transcriptional control of diverse stress responses. PLoS One. 2016;11(3):e0152145.
50. Dutta NK, Mehra S, Martinez AN, Alvarez X, Renner NA, Morici LA, et al. The stress-response factor SigH modulates the interaction between Mycobacterium tuberculosis and host phagocytes. PLoS One. 2012;7(1):e28958.
51. Sureka K, Hossain T, Mukherjee P, Chatterjee P, Datta P, Kundu M, et al. Novel role of phosphorylation-dependent interaction between FtsZ and FipA in mycobacterial cell division. PLOS one. 2010;5(1):e8590.
52. Buchmeier NA, Newton GL, Fahey RC. A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited tolerance to stress. Journal of bacteriology. 2006;188(17):6245-52.
53. Mukherjee P, Sureka K, Datta P, Hossain T, Barik S, Das KP, et al. Novel role of Wag31 in protection of mycobacteria under oxidative stress. Molecular microbiology. 2009;73(1):103-19.
54. Arora G, Sajid A, Singhal A, Joshi J, Virmani R, Gupta M, et al. Identification of Ser/Thr kinase and forkhead associated domains in Mycobacterium ulcerans: characterization of novel association between protein kinase Q and MupFHA. PLoS neglected tropical diseases. 2014;8(11):e3315.
55. Romero MM, Balboa L, Basile JI, Lopez B, Ritacco V, De la Barrera SS, et al. Clinical isolates of Mycobacterium tuberculosis differ in their ability to induce respiratory burst and apoptosis in neutrophils as a possible mechanism of immune escape. Clinical and Developmental Immunology. 2012;2012.
56. Imai K, Kurita-Ochiai T, Ochiai K. Mycobacterium bovis bacillus Calmette-Gueérin infection promotes SOCS induction and inhibits IFN-γ-stimulated JAK/STAT signaling in J774 macrophages. FEMS Immunology & Medical Microbiology. 2003;39(2):173-80.
57. Lamichhane G. Mycobacterium tuberculosis response to stress from reactive oxygen and nitrogen species. Frontiers in Microbiology. 2011;2:176.
58. Ganguly N, Giang PH, Gupta C, Basu SK, Siddiqui I, Salunke DM, et al. Mycobacterium tuberculosis secretory proteins CFP‐10, ESAT‐6 and the CFP10: ESAT6 complex inhibit lipopolysaccharide‐induced NF‐κB transactivation by downregulation of reactive oxidative species (ROS) production. Immunology and cell biology. 2008;86(1):98-106.
59. Colangeli R, Haq A, Arcus VL, Summers E, Magliozzo R, McBride A, et al. The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates. Proceedings of the National Academy of Sciences. 2009;106(11):4414-8.
60. Shin D-M, Jeon B-Y, Lee H-M, Jin HS, Yuk J-M, Song C-H, et al. Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS pathogens. 2010;6(12):e1001230.
61. Sao Emani C, Williams M, Van Helden P, Taylor M, Wiid I, Baker B. Gamma-glutamylcysteine protects ergothioneine-deficient Mycobacterium tuberculosis mutants against oxidative and nitrosative stress. Biochemical and biophysical research communications. 2018;495(1):174-8.
62. Silva Miranda M, Breiman A, Allain S, Deknuydt F, Altare F. The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clinical and Developmental Immunology. 2012;2012.
63. Guirado E, Schlesinger LS. Modeling the Mycobacterium tuberculosis granuloma–the critical battlefield in host immunity and disease. Frontiers in immunology. 2013;4:98.
64. Barry CE, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Reviews Microbiology. 2009;7(12):845-55.
65. Huynh KK, Joshi SA, Brown EJ. A delicate dance: host response to mycobacteria. Current opinion in immunology. 2011;23(4):464-72.
66. Flynn JL, Chan J, Lin P. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal immunology. 2011;4(3):271-8.
67. Yoshida A, Inagawa H, Kohchi C, Nishizawa T, Soma G-I. The role of toll-like receptor 2 in survival strategies of Mycobacterium tuberculosis in macrophage phagosomes. Anticancer research. 2009;29(3):907-10.
68. Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of a host–pathogen collusion. Frontiers in immunology. 2013;3:411.
69. Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A, Germain RN. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity. 2008;28(2):271-84.
70. Pieters J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell host & microbe. 2008;3(6):399-407.
71. Jafari A, Nagheli A, Foumani AA, Soltani B, Goswami R. The role of metallic nanoparticles in inhibition of Mycobacterium tuberculosis and enhances phagosome maturation into the infected macrophage. Oman Medical Journal. 2020;35(6):e194.
72. Mariotti S, Sargentini V, Pardini M, Giannoni F, De Spirito M, Gagliardi MC, et al. Mycobacterium tuberculosis may escape helper T cell recognition by infecting human fibroblasts. Human immunology. 2013;74(6):722-9.
73. Saini NK, Baena A, Ng TW, Venkataswamy MM, Kennedy SC, Kunnath-Velayudhan S, et al. Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nature microbiology. 2016;1(9):1-12.
74. Yang J, Zhao Z, Gu M, Feng X, Xu H. Release and uptake mechanisms of vesicular Ca2+ stores. Protein & cell. 2019;10(1):8-19.
75. Zhong XZ, Zou Y, Sun X, Dong G, Cao Q, Pandey A, et al. Inhibition of transient receptor potential channel mucolipin-1 (TRPML1) by lysosomal adenosine involved in severe combined immunodeficiency diseases. Journal of Biological Chemistry. 2017;292(8):3445-55.
76. Saheki Y, De Camilli P. Endoplasmic reticulum–plasma membrane contact sites. Annual review of biochemistry. 2017;86:659-84.
77. Cruz A, Fraga AG, Fountain JJ, Rangel-Moreno J, Torrado E, Saraiva M, et al. Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis. Journal of Experimental Medicine. 2010;207(8):1609-16.
78. Kusner DJ, Barton JA. ATP stimulates human macrophages to kill intracellular virulent Mycobacterium tuberculosis via calcium-dependent phagosome-lysosome fusion. The Journal of Immunology. 2001;167(6):3308-15.
79. Weber RA, Yen FS, Nicholson SP, Alwaseem H, Bayraktar EC, Alam M, et al. Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation. Molecular cell. 2020;77(3):645-55. e7.
80. Garcia-Bermudez J, Baudrier L, Bayraktar EC, Shen Y, La K, Guarecuco R, et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature. 2019;567(7746):118-22.
81. Sensi SL, Granzotto A, Siotto M, Squitti R. Copper and zinc dysregulation in Alzheimer’s disease. Trends in Pharmacological Sciences. 2018;39(12):1049-63.
82. Koh J-Y, Kim HN, Hwang JJ, Kim Y-H, Park SE. Lysosomal dysfunction in proteinopathic neurodegenerative disorders: possible therapeutic roles of cAMP and zinc. Molecular Brain. 2019;12(1):1-11.
83. Zhu XG, Puthenveedu SN, Shen Y, La K, Ozlu C, Wang T, et al. CHP1 regulates compartmentalized glycerolipid synthesis by activating GPAT4. Molecular cell. 2019;74(1):45-58. e7.
84. Sha S, Shi X, Deng G, Chen L, Xin Y, Ma Y. Mycobacterium tuberculosis Rv1987 induces Th2 immune responses and enhances Mycobacterium smegmatis survival in mice. Microbiological research. 2017;197:74-80.
85. Mindell JA. Lysosomal acidification mechanisms. Annual review of physiology. 2012;74:69-86.
86. Sun-Wada G-H, Tabata H, Kawamura N, Aoyama M, Wada Y. Direct recruitment of H+-ATPase from lysosomes for phagosomal acidification. Journal of cell science. 2009;122(14):2504-13.
87. Iwabuchi K. Lactosylceramide-enriched lipid raft-mediated infection immunity. Medical Mycology Journal. 2018;59(3):J51-J61.
88. Stewart M. Molecular mechanism of the nuclear protein import cycle. Nature reviews Molecular cell biology. 2007;8(3):195-208.
89. Choi H-H, Shin D-M, Kang G, Kim K-H, Park JB, Hur GM, et al. Endoplasmic reticulum stress response is involved in Mycobacterium tuberculosis protein ESAT-6-mediated apoptosis. FEBS letters. 2010;584(11):2445-54.
90. Toyomura T, Murata Y, Yamamoto A, Oka T, Sun-Wada G-H, Wada Y, et al. From lysosomes to the plasma membrane: localization of vacuolar type H+-ATPase with the a3 isoform during osteoclast differentiation. Journal of Biological Chemistry. 2003;278(24):22023-30.
91. Kusner DJ, Adams J. ATP-induced killing of virulent Mycobacterium tuberculosis within human macrophages requires phospholipase D. The Journal of Immunology. 2000;164(1):379-88.
92. Macklaim JM, Fernandes AD, Di Bella JM, Hammond J-A, Reid G, Gloor GB. Comparative meta-RNA-seq of the vaginal microbiota and differential expression by Lactobacillus iners in health and dysbiosis. Microbiome. 2013;1(1):1-11.
93. Macklaim JM, Clemente JC, Knight R, Gloor GB, Reid G. Changes in vaginal microbiota following antimicrobial and probiotic therapy. Microbial ecology in health and disease. 2015;26(1):27799.
94. Ahmed M, Smith DM, Hamouda T, Rangel-Moreno J, Fattom A, Khader SA. A novel nanoemulsion vaccine induces mucosal Interleukin-17 responses and confers protection upon Mycobacterium tuberculosis challenge in mice. Vaccine. 2017;35(37):4983-9.
95. Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UM, Zhong X, et al. Temporal dynamics of the human vaginal microbiota. Science translational medicine. 2012;4(132):132ra52-ra52.
96. Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. Journal of molecular and cellular cardiology. 2019;136:27-41.
97. Kaplan O, Demircan G. Relationship of autophagy and apoptosis with total occlusion of coronary arteries. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2018;24:6984.
98. Deretic V. Autophagy in immunity and cell‐autonomous defense against intracellular microbes. Immunological reviews. 2011;240(1):92-104.
99. Li D, Chen A, Lan T, Zou Y, Zhao L, Yang P, et al. SCAP knockdown in vascular smooth muscle cells alleviates atherosclerosis plaque formation via up‐regulating autophagy in ApoE−/− mice. The FASEB Journal. 2019;33(3):3437-50.
100. D’Acquisto F, Crompton T. CD3+ CD4− CD8−(double negative) T cells: saviours or villains of the immune response? Biochemical pharmacology. 2011;82(4):333-40.
101. Deretic V. Multiple regulatory and effector roles of autophagy in immunity. Current opinion in immunology. 2009;21(1):53-62.
Files | ||
Issue | Vol 12 No 3 (2024) | |
Section | Review Articles | |
DOI | https://doi.org/10.18502/jmb.v12i3.16610 | |
Keywords | ||
Mycobacterium tuberculosis Immune system Oxidative stress Apoptosis |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |