Review Articles

Possible Link between Gut Microbiota, Diet, and COVID-19 Infection

Abstract

Background:     Coronavirus disease 2019 (COVID-19) is a concern for world health since it may impact both the upper (nose, throat, sinuses) and lower (trachea, lungs) respiratory tracts. Death (at a rate of 10%), respiratory failure, multi-organ failure, and acute respiratory distress syndrome (ARDS) are among the problems that might arise. Recent years have seen a global spread of zoonotic coronaviruses, which have caused human epidemics such as MERS and SARS. Various clinical symptoms may be seen in this sickness because to the numerous changes in intestinal homeostasis caused by SARS-CoV-2. Because of the beneficial impact that probiotics have on the host immune system, gastrointestinal disorders may now be effectively treated. This article discusses the close relationship between what we eat, the bacteria in our gut, and the risk of contracting the COV-19 virus.

Conclusion:   The relationship between gut microbiota, dietary factors, and COVID-19 severity indicates that the microbiome may influence immune regulation. Imbalances in microbial communities and reduced diversity can intensify inflammation, potentially worsening COVID-19 outcomes. Strategies such as probiotics, prebiotics, and dietary changes might provide therapeutic benefits by improving gut health and strengthening immune defenses. However, further research is required to clarify these mechanisms and establish effective interventions.

1. Serratosa JM, Minassian BA, Ganesh S. Progressive myoclonus epilepsy of Lafora. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper's Basic Mechanisms of the Epilepsies. Bethesda (MD): National Center for Biotechnology Information (US). Copyright © 2012, Michael A Rogawski, Antonio V Delgado-Escueta, Jeffrey L Noebels, Massimo Avoli and Richard W Olsen.; 2012.
2. Saberiyan M, Safi A, Kamel A, et al. An Overview on the Common Laboratory Parameter Alterations and their Related Molecular Pathways in Screening for COVID-19 Patients. Clinical laboratory 2020; 66(10).
3. Bosch BJ, van der Zee R, de Haan CA, et al. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J virology 2003; 77(16):8801-11.
4. Rivellese F, Prediletto E. ACE2 at the centre of COVID-19 from paucisymptomatic infections to severe pneumonia. Autoimmunity rev 2020; 19(6):102536.
5. Khaledi M, Sameni F, Amini-Khoei H, et al. A Comprehensive review of herbal recommendations with the potential to inhibit COVID-19 infection. J Med Bacteriol 2023; 11(5-6):49-69.
6. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology (Carlton, Vic) 2018; 23(2):130-7.
7. Khaledi M, Sameni F, Yahyazade S, Radandish M, Owlia P, Bagheri N, et al. COVID-19 and the potential of Janus family kinase (JAK) pathway inhibition: A novel treatment strategy. Front Med 2022; 9:961027.
8. Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol 2019; 12(4):843-50.
9. He Y, Wen Q, Yao F, et al. Gut-lung axis: The microbial contributions and clinical implications. Crit Rev Microbiol 2017; 43(1):81-95.
10. Mjösberg J, Rao A. Lung inflammation originating in the gut. Science. 2018; 359(6371):36-7.
11. Bradley KC, Finsterbusch K, Schnepf D, et al. Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection. Cell reports 2019; 28(1):245-56.e4.
12. Kardan R, Hemmati J, Nazari M, et al. Novel therapeutic strategy for obesity through the gut microbiota-brain axis: A review article. Caspian J Inter Med 2024; 15(2):215-27.
13. Dumas A, Bernard L, Poquet Y, et al. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol 2018; 20(12):e12966.
14. Moskovicz V, Gross A, Mizrahi B. Extrinsic factors shaping the skin microbiome. Microorganisms 2020; 8(7):1023.
15. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474(11):1823-36.
16. Sukmana BI, Saleh RO, Najim MA, et al. Oral microbiota and oral squamous cell carcinoma: a review of their relation and carcinogenic mechanisms. Front Oncol 2024; 14.
17. Jandhyala SM, Talukdar R, Subramanyam C, et al. Role of the normal gut microbiota. World J Gastroenterol 2015; 21(29):8787-803.
18. Corfield AP. The Interaction of the gut microbiota with the mucus barrier in health and disease in human. Microorganisms 2018; 6(3).
19. Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circul Res 2017; 120(7):1183-96.
20. Khaledi M, Darvishi M, Sameni F, et al. Association between exercise and changes in gut microbiota profile: a review. Sport Sci Health 2023:1-14.
21. Icaza-Chávez ME. Gut microbiota in health and disease. Revista de gastroenterologia de Mexico. 2013; 78(4):240-8.
22. Reiss A, Jacobi M, Rusch K, et al. Association of dietary type with fecal microbiota and short chain fatty acids in vegans and omnivores. J Inter Soc Microbiota 2016;2.
23. Zhang D, Li S, Wang N, et al. The Cross-talk between gut microbiota and lungs in common lung diseases. Front Microbiol 2020; 11:301.
24. Kashtanova DA, Popenko AS, Tkacheva ON, et al. Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition (Burbank, Los Angeles County, Calif). 2016; 32(6):620-7.
25. Lagier JC, Million M, Hugon P, et al. Human gut microbiota: repertoire and variations. Front Cell Infec Microbiol. 2012; 2:136.
26. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012; 486(7402):222-7.
27. Cryan JF, O'Riordan KJ, Cowan CSM, et al. The Microbiota-Gut-Brain Axis. Phys Rev 2019; 99(4):1877-2013.
28. Negi S, Das DK, Pahari S, et al. Potential role of gut microbiota in induction and regulation of innate immune memory. Front Immunol 2019; 10:2441.
29. Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature Rev 2018; 15(2):111-28.
30. Sahoo S, Mohapatra S, Dalai Sp, et al. Effect of probiotics on host-microbial crosstalk: a review on strategies to combat diversified strain of coronavirus. Encyclopedia 2022; 2(2):1138-53.
31. Abt MC, Osborne LC, Monticelli LA, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 2012; 37(1):158-70.
32. Gu S, Chen Y, Wu Z, et al. Alterations of the gut microbiota in patients with coronavirus disease 2019 or h1n1 influenza. Clinical Infect Dis 2020; 71(10):2669-78.
33. Tan J, McKenzie C, Potamitis M, et al. The role of short-chain fatty acids in health and disease. Adv Immunol 2014; 121:91-119.
34. Hull EE, Montgomery MR, Leyva KJ. HDAC inhibitors as epigenetic regulators of the immune system: impacts on cancer therapy and inflammatory diseases. BioMed Res Int 2016; 2016:8797206.
35. Husted AS, Trauelsen M, Rudenko O, et al. GPCR-mediated signaling of metabolites. Cell Metabolism 2017; 25(4):777-96.
36. Li M, van Esch B, Wagenaar GTM, et al. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol 2018; 831:52-9.
37. Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care 2010; 13(6):715-21.
38. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013; 504(7480):446-50.
39. Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40(1):128-39.
40. Trompette A, Gollwitzer ES, Pattaroni C, et al. Dietary fiber confers protection against flu by shaping ly6c(-) patrolling monocyte hematopoiesis and cd8(+) t cell metabolism. Immunity 2018; 48(5):992-1005.e8.
41. Dang AT, Marsland BJ. Microbes, metabolites, and the gut–lung axis. Muc Immunol 2019; 12(4):843-50.
42. Kopf M, Schneider C, Nobs SP. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 2015; 16(1):36-44.
43. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nature Reviews Immunology 2016; 16(6):341-52.
44. Gao J, Xu K, Liu H, et al. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front Cell Infect Microbiol 2018; 8:13.
45. Levy M, Thaiss CA, Elinav E. Metabolites: messengers between the microbiota and the immune system. Genes Develop 2016; 30(14):1589-97.
46. Morita N, Umemoto E, Fujita S, et al. GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites. Nature 2019; 566(7742):110-4.
47. Steed AL, Christophi GP, Kaiko GE, et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science. 2017; 357(6350):498-502.
48. Schuijt TJ, Lankelma JM, Scicluna BP, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 2016; 65(4):575-83.
49. Anand S, Mande SS. Diet, Microbiota and Gut-Lung Connection. Front Microbiol 2018; 9:2147.
50. Din AU, Mazhar M, Waseem M, et al. SARS-CoV-2 microbiome dysbiosis linked disorders and possible probiotics role. Biomed Pharmacother 2021; 133:110947.
51. Yang Y, Shen C, Li J, et al. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. medRxiv 2020;20029975.
52. Kumar V, Baruah K, Nguyen DV, et al. Phloroglucinol-mediated hsp70 production in crustaceans: protection against vibrio parahaemolyticus in Artemia franciscana and Macrobrachium rosenbergii. Front Immunol 2018; 9:1091.
53. Prince CP. A comprehensive review of probiotics and their uses for control of viral infections in the wake of pandemic COVID-19. Trop J Pharm Life Sci 2020; 7(2):1-14
54. Brewster R, Tamburini FB, Asiimwe E, et al. Surveying gut microbiome research in africans: toward improved diversity and representation. Trends Microbiol 2019; 27(10):824-35.
55. Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res 2020; 285:198018.
56. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484):559-63.
57. Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol 2017; 8:1162.
58. Houghton D, Stewart CJ, Day CP, et al. Gut microbiota and lifestyle interventions in NAFLD. Int J Mol Sci 2016; 17(4):447.
59. Oduaran OH, Tamburini FB, Sahibdeen V, et al. Gut microbiome profiling of a rural and urban South African cohort reveals biomarkers of a population in lifestyle transition. BMC Microbiol 2020; 20(1):330.
60. Patton GC, Olsson CA, Skirbekk V, et al. Adolescence and the next generation. Nature 2018; 554(7693):458-66.
61. Senghor B, Sokhna C, Ruimy R, et al. Gut microbiota diversity according to dietary habits and geographical provenance. Human Microb J 2018;7-8:1-9.
62. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011; 473(7346):174-80.
63. Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015; 519(7541):92-6.
64. Zinöcker MK, Lindseth IA. The western diet-microbiome-host interaction and its role in metabolic disease. Nutrients 2018; 10(3).
65. Jeffery IB, Claesson MJ, O'Toole PW, et al. Categorization of the gut microbiota: enterotypes or gradients? Nature Rev Microbiol 2012; 10(9):591-2.
66. Schloissnig S, Arumugam M, Sunagawa S, et al. Genomic variation landscape of the human gut microbiome. Nature 2013; 493(7430):45-50.
67. Escobar JS, Klotz B, Valdes BE, et al. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol 2014; 14:311.
68. Mohebali N, Weigel M, Hain T, et al. Faecalibacterium prausnitzii, Bacteroides faecis and Roseburia intestinalis attenuate clinical symptoms of experimental colitis by regulating Treg/Th17 cell balance and intestinal barrier integrity. Biomed Pharmacother 2023; 167:115568.
69. Mueller S, Saunier K, Hanisch C, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Applied Env Microbiol 2006; 72(2):1027-33.
70. Bhute S, Pande P, Shetty SA, et al. Molecular characterization and meta-analysis of gut microbial communities illustrate enrichment of prevotella and megasphaera in Indian Subjects. Front Microbiol 2016; 7:660.
71. Dhakan DB, Maji A, Sharma AK, et al. The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches. GigaSci 82019; (3).
72. Dubey AK, Uppadhyaya N, Nilawe P, et al. LogMPIE, pan-India profiling of the human gut microbiome using 16S rRNA sequencing. Scientific data 2018; 5:180232.
73. Das B, Ghosh TS, Kedia S, et al. Analysis of the gut microbiome of rural and urban healthy indians living in sea level and high altitude areas. Scientific Rep 2018; 8(1):10104.
74. Dehingia M, Devi KT, Talukdar NC, et al. Gut bacterial diversity of the tribes of India and comparison with the worldwide data. Scientific Rep 2015; 5:18563.
75. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS 2010; 107(33):14691-6.
76. Nam YD, Jung MJ, Roh SW, et al. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PloSone 2011; 6(7):e22109.
77. He Y, Wu W, Zheng HM, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 2018; 24(10):1532-5.
78. Panebianco C, Potenza A, Andriulli A, et al. Exploring the microbiota to better understand gastrointestinal cancers physiology. Clin Chem Lab Med 2018; 56(9):1400-12.
79. Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 2018; 6(1):92.
80. Rajpoot M, Sharma AK, Sharma A, et al. Understanding the microbiome: emerging biomarkers for exploiting the microbiota for personalized medicine against cancer. Sem Cancer Biol 2018;52(Pt 1):1-8.
81. Wang B, Yao M, Lv L, et al. The Human Microbiota in Health and Disease. Engineering 2017; 3(1):71-82.
82. Zhou Y, Xu ZZ, He Y, et al. Gut Microbiota offers universal biomarkers across ethnicity in inflammatory bowel disease diagnosis and infliximab response prediction. mSystems 2018; 3(1).
83. Ayeni FA, Biagi E, Rampelli S, et al. Infant and adult gut microbiome and metabolome in rural bassa and urban settlers from Nigeria. Cell Rep 2018; 23(10):3056-67.
84. Martínez I, Stegen JC, Maldonado-Gómez MX, et al. The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes. Cell Rep 2015; 11(4):527-38.
85. Oniang'o RK, Mutuku JM, Malaba SJ. Contemporary African food habits and their nutritional and health implications. Asia Pac J clin Nut 2003; 12(3):331-6.
86. Tankoano A, Sawadogo-Lingani H, Savadogo A, et al. Study of the process and microbiological quality of Gappal, a fermented food from Burkina Faso based on milk and millet dough. Int J Multidis Currt Res 2017; 5(1):104-10.
87. Puértolas-Balint F, Schroeder BO. Intestinal α-defensins play a minor role in modulating the small intestinal microbiota composition as compared to diet. Microbiol Spec 2023; 11(3):e00567-23.
88. Zhang J, Liu Y, Wu H, et al. Is Shigella an under-recognized pathogen? A case of pyogenic cervical spondylitis caused by Escherichia coli and Shigella flexneri infection. IDCases 2024; 35:e01930.
89. Buonsenso D, De Rose C, Mariotti P. Children experienced new or worsening tic issues when they were separated from their parents during the Italian COVID‐19 lockdown. Acta Paediatrica 2021; 110(2):394.
90. Grześkowiak Ł, Collado MC, Mangani C, et al. Distinct gut microbiota in southeastern African and northern European infants. J Ped Gastroenterol Nut 2012; 54(6):812-6.
91. Schnorr SL, Candela M, Rampelli S, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 2014; 5:3654.
92. Gomez A, Petrzelkova KJ, Burns MB, et al. Gut microbiome of coexisting baaka pygmies and bantu reflects gradients of traditional subsistence patterns. Cell Rep 2016; 14(9):2142-53.
93. Estruch R, Salas-Salvadó J. Towards an even healthier Mediterranean diet. NMCD 2013; 23(12):1163-6.
94. de Lorgeril M, Salen P, Martin JL, et al. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 1999; 99(6):779-85.
95. Kastorini CM, Milionis HJ, Esposito K, et al. The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. JACC 2011; 57(11):1299-313.
96. Lourida I, Soni M, Thompson-Coon J, et al. Mediterranean diet, cognitive function, and dementia: a systematic review. Epidemiology 2013; 24(4):479-89.
97. Psaltopoulou T, Sergentanis TN, Panagiotakos DB, et al. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis. Annal Neurol 2013; 74(4):580-91.
98. Ianiro G, Del Vecchio LE, Fiorani M, et al. The mutual relationship between Covid-19 and gut microbiota. Microb Health Dis 2021; 3:e578.
99. Groves HT, Higham SL, Moffatt MF, et al. Respiratory viral infection alters the gut microbiota by inducing inappetence. mBio 2020; (1).
100. Sencio V, Machelart A, Robil C, et al. Alteration of the gut microbiota following SARS-CoV-2 infection correlates with disease severity in hamsters. Gut Microb 2022; 14(1):2018900.
101. Yeoh YK, Zuo T, Lui GC, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021; 70(4):698-706.
102. Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterol 2020; 159(3):944-55.e8.
103. Xu K, Cai H, Shen Y, et al. Management of COVID-19: the Zhejiang experience. J Zhejiang Univ Med Sci 2020; 49(2):147-57.
104. Zuo T, Liu Q, Zhang F, et al. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 2021; 70(2):276-84.
105. Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nature Rev Microbiol 2018; 16(6):355-67.
106. Villapol S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. J Lab Clin Med 2020; 226:57-69.
107. Reyman M, van Houten MA, Arp K, et al. Rectal swabs are a reliable proxy for faecal samples in infant gut microbiota research based on 16S-rRNA sequencing. Scientific Rep 2019; 9(1):16072.
108. Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Muc Immunol 2017; 10(1):18-26.
109. Kaźmierczak-Siedlecka K, Vitale E, Makarewicz W. COVID-19 - gastrointestinal and gut microbiota-related aspects. Eur Rev Med Pharma Sci 2020; 24(20):10853-9.
110. Khan M, Mathew BJ, Gupta P, et al. Gut dysbiosis and IL-21 response in patients with severe COVID-19. Microorganisms 2021; 9(6).
111. Segal JP, Mak JWY, Mullish BH, et al. The gut microbiome: an under-recognised contributor to the COVID-19 pandemic? Ther Adv Gastroenterol 2020; 13:1756284820974914.
112. Yeoh YK, Zuo T, Lui GCY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021; 70(4):698-706.
113. Zuo T, Zhan H, Zhang F, et al. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge. Gastroenterol 2020; 159(4):1302-10.e5.
114. Chakraborty C, Sharma AR, Bhattacharya M, et al. Altered gut microbiota patterns in COVID-19: Markers for inflammation and disease severity. World J Gastroenterol 2022; 28(25):2802-22.
115. Bottari B, Castellone V, Neviani E. Probiotics and COVID-19. Int J Food Sci Nut 2021; 72(3):293-9.
116. Cong J. Metabolism of natural killer cells and other innate lymphoid cells. Front Immunol 2020; 11:555273.
117. Darbandi A, Mirshekar M, Shariati A, et al. The effects of probiotics on reducing the colorectal cancer surgery complications: a periodic review during 2007–2017. Clin Nut 2020; 39(8):2358-67.
118. Vassilopoulou L, Spyromitrou-Xioufi P, Ladomenou F. Effectiveness of probiotics and synbiotics in reducing duration of acute infectious diarrhea in pediatric patients in developed countries: a systematic review and meta-analysis. Eur J Ped 2021; 180:2907-20.
119. Bauer A, Rawa T. Circulating monocyte chemoattractant protein-1 (MCP-1) in patients with primary biliary cholangitis. Int J Mol Sci 2024; 25(2):1333.
120. Khaled JM. Probiotics, prebiotics, and COVID-19 infection: A review article. Saudi J Bio Sci 2021; 28(1):865-9.
121. Mousavizadeh L, Soltani R, Abedini K, et al. The relation of the viral structure of SARS-CoV-2, high-risk condition, and plasma levels of IL-4, IL-10, and IL-15 in COVID-19 patients compared to SARS and MERS infections. Curr Mol Med 2022; 22(7):584-93.
122. Merenstein D, Murphy M, Fokar A, et al. Use of a fermented dairy probiotic drink containing Lactobacillus casei (DN-114 001) to decrease the rate of illness in kids: the DRINK study A patient-oriented, double-blind, cluster-randomized, placebo-controlled, clinical trial. Eur J Clin Nut 2010; 64(7):669-77.
123. Turner R, Woodfolk J, Borish L, et al. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection–a randomised controlled trial. Beneficial Microbes 2017; 8(2):207.
124. Darbandi A, Asadi A, Ghanavati R, et al. The effect of probiotics on respiratory tract infection with special emphasis on COVID-19: Systemic review 2010–20. Int J Infec Dis 2021; 105:91-104.
125. Din AU, Mazhar M, Waseem M, et al. SARS-CoV-2 microbiome dysbiosis linked disorders and possible probiotics role. Biomed Pharmacother 2021; 133:110947.
126. V J RK, Seo BJ, Mun MR, et al. Putative probiotic Lactobacillus spp. from porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens. Trop Anim Health Prod 2010; 42(8):1855-60.
127. Fernández-Ferreiro A, Formigo-Couceiro FJ, Veiga-Gutierrez R, et al. Effects of Loigolactobacillus coryniformis K8 CECT 5711 on the immune response of elderly subjects to COVID-19 vaccination: a randomized controlled trial. Nutrients 2022; 14(1):228.
128. Gleeson M, Bishop NC, Oliveira M, et al. Effects of a Lactobacillus salivarius probiotic intervention on infection, cold symptom duration and severity, and mucosal immunity in endurance athletes. IJSNEM 2012; 22(4):235-42.
129. Chen J, Vitetta L. Modulation of gut microbiota for the prevention and treatment of COVID-19. J Clin Med 2021; 10(13):2903.
130. Wischmeyer PE, Tang H, Ren Y, et al. Daily Lactobacillus probiotic versus placebo in COVID-19-exposed household contacts (protect-ehc): a randomized clinical trial. medRxiv. 2022.
131. Al Kassaa I, Hober D, Hamze M, et al. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob Proteins 2014; 6(3):177-85.
132. Hung YP, Lee CC, Lee JC, et al. Gut dysbiosis during COVID-19 and potential effect of probiotics. Microorganisms 2021; 9(8):1605.
133. Morrow LE, Kollef MH, Casale TB. Probiotic prophylaxis of ventilator-associated pneumonia: a blinded, randomized, controlled trial. Am J Respir Crit Care Med 2010; 182(8):1058-64.
134. Davani-Davari D, Negahdaripour M, Karimzadeh I, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 2019; 8(3):92.
135. Walton GE, Gibson GR, Hunter KAJBJoN. Mechanisms linking the human gut microbiome to prophylactic and treatment strategies for COVID-19. Br J Nutr 2021; 126(2):219-27.
136. Hu J, Zhang L, Lin W, Tang W, Chan FK, Ng SCJTiFS, et al. Probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends Food Sci Technol 2021; 108:187-96.
137. Khaledi M, Poureslamfar B, Alsaab HO, et al. The role of gut microbiota in human metabolism and inflammatory diseases: a focus on elderly individuals. Annals Microbiol 2024; 74(1):1.
138. Iravani S, Varma RSJAS. Important roles of oligo-and polysaccharides against SARS-CoV-2: recent advances. Appl Sci 2021; 11(8):3512.
139. Hamada H, Hamada H, Shimoda K, et al. Resveratrol oligosaccharides (gluco-oligosaccharides) effectively inhibit SARS-CoV-2 infection: Glycoside (polysaccharide) approach for treatment of COVID-19. Nat Prod Commun 2021; 16(5):1934578X211012903.
140. Archer DL, Kramer DCJFiM. The use of microbial accessible and fermentable carbohydrates and/or butyrate as supportive treatment for patients with coronavirus SARS-CoV-2 infection. Front Med 2020; 7:292.
141. Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J, et al. Dietary fiber confers protection against flu by shaping Ly6c− patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immun 2018; 48(5):992-1005.e8.
142. Dang AT, Marsland BJJMi. Microbes, metabolites, and the gut–lung axis. 2019; 12(4):843-50.
143. Terrie YC. The Important Role of Vitamin D-Vitamin D, which aids the body's immune and skeletal systems in various ways, is available in many foods and in many OTC nutritional supplements. Pharmacy Times 2010; 76(2):26.
144. Al-Daghri NM, Amer OE, Alotaibi NH, et al. Vitamin D status of Arab Gulf residents screened for SARS-CoV-2 and its association with COVID-19 infection: a multi-centre case–control study. J Trans Med 2021; 19(1):166.
145. Campi I, Gennari L, Merlotti D, et al. Vitamin D and COVID-19 severity and related mortality: a prospective study in Italy. BMC Infec Dis 2021; 21(1):1-13.
146. Monlezun DJ, Bittner EA, Christopher KB, et al. Vitamin D status and acute respiratory infection: cross sectional results from the United States National Health and Nutrition Examination Survey, 2001–2006. Nutrients 2015; 7(3):1933-44.
147. Fernandes AL, Murai IH, Reis BZ, et al. Effect of a single high dose of vitamin D3 on cytokines, chemokines, and growth factor in patients with moderate to severe COVID-19. Am J Clin Nut 2022; 115(3):790-8.
148. Villasis-Keever MA, López-Alarcón MG, Miranda-Novales G, et al. Efficacy and safety of vitamin D supplementation to prevent COVID-19 in frontline healthcare workers. A randomized clinical trial. Arch Med Res 2022; 53(4):423-30.
149. Rastogi A, Bhansali A, Khare N, et al. Short term, high-dose vitamin D supplementation for COVID-19 disease: a randomised, placebo-controlled, study (SHADE study). Postgraduate Med J 2022; 98(1156):87-90.
150. De Niet S, Trémège M, Coffiner M, et al. Positive effects of vitamin D supplementation in patients hospitalized for COVID-19: a randomized, double-blind, placebo-controlled trial. Nutrients 2022; 14(15):3048.
151. Sulli A, Gotelli E, Casabella A, et al. Vitamin D and lung outcomes in elderly COVID-19 patients. Nutrients 2021; 13(3):717.
152. Saponaro F, Franzini M, Okoye C, et al. Is there a crucial link between vitamin D status and inflammatory response in patients with COVID-19? Front Immunol 2022; 12:5843.
153. AlSafar H, Grant WB, Hijazi R, et al. COVID-19 disease severity and death in relation to vitamin D status among SARS-CoV-2-positive UAE residents. Nutrients 2021; 13(5):1714.
154. Li Y, Schellhorn HE. New developments and novel therapeutic perspectives for vitamin C. J Nut 2007; 137(10):2171-84.
155. Liu F, Zhu Y, Zhang J, et al. Intravenous high-dose vitamin C for the treatment of severe COVID-19: study protocol for a multicentre randomised controlled trial. BMJ Open 2020; 10(7):e039519.
156. Tehrani S, Yadegarynia D, Abrishami A, et al. An investigation into the effects of intravenous vitamin C on pulmonary CT findings and clinical outcomes of patients with COVID 19 pneumonia A randomized clinical trial. Urology J 2022; 19(06):460-5.
157. Hiedra R, Lo KB, Elbashabsheh M, et al. The use of IV vitamin C for patients with COVID-19: a case series. Exp Rev Anti-Infect Ther 2020; 18(12):1259-61.
158. Al Sulaiman K, Aljuhani O, Saleh KB, et al. Ascorbic acid as an adjunctive therapy in critically ill patients with COVID-19: A propensity score matched study. Scientific Rep 2021; 11(1):17648.
159. Xing Y, Zhao B, Yin L, et al. Vitamin C supplementation is necessary for patients with coronavirus disease: An ultra-high-performance liquid chromatography-tandem mass spectrometry finding. J Pharm Biomed Anal 2021; 196:113927.
160. Gorton HC, Jarvis K. The effectiveness of vitamin C in preventing and relieving the symptoms of virus-induced respiratory infections. J Man Phys Ther 1999; 22(8):530-3.
161. Thomas S, Patel D, Bittel B, et al. Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: the COVID A to Z randomized clinical trial. JAMA 2021; 4(2):e210369-e.
162. Maret W. Zinc in cellular regulation: the nature and significance of “zinc signals”. International J Mol Sci 2017; 18(11):2285.
163. Wessels I, Maywald M, Rink L. Zinc as a gatekeeper of immune function. Nutrients 2017; 9(12):1286.
164. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nut1998; 68(2):447S-63S.
165. Hemilä H. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage. JRSM open. 2017; 8(5):2054270417694291.
166. Sadeghsoltani F, Mohammadzadeh I, Safari M-M, et al. Zinc and respiratory viral infections: important trace element in anti-viral response and immune regulation. Bio Trace Elem Res 2021:1-16.
167. Heller RA, Sun Q, Hackler J, et al. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. Redox Biol 2021; 38:101764.
168. Stambouli N, Driss A, Gargouri F, et al. COVID-19 prophylaxis with doxycycline and zinc in health care workers: A prospective, randomized, double-blind clinical trial. Int J Infect Dis 2022; 122:553-8.
169. Ben Abdallah S, Mhalla Y, Trabelsi I, et al. Twice-Daily Oral Zinc in the Treatment of Patients With Coronavirus Disease 2019: A Randomized Double-Blind Controlled Trial. Clin Infect Dis 2023; 76(2):185-91.
170. Ross AC, Caballero B, Cousins RJ, et al. Modern nutrition in health and disease: Jones & Bartlett Learning; 2020.
171. Avery JC, Hoffmann PR. Selenium, selenoproteins, and immunity. Nutrients 2018; 10(9):1203.
172. Guillin OM, Vindry C, Ohlmann T, et al. Selenium, selenoproteins and viral infection. Nutrients 2019; 11(9):2101.
173. Albers R, Bourdet-Sicard R, Braun D, et al. Monitoring immune modulation by nutrition in the general population: identifying and substantiating effects on human health. British J Nut 2013; 110(S2):S1-S30.
174. Beck MA, Handy J, Levander OA. Host nutritional status: the neglected virulence factor. Trends Microbiol 2004; 12(9):417-23.
175. Vavougios GD, Ntoskas KT, Doskas TK. Impairment in selenocysteine synthesis as a candidate mechanism of inducible coagulopathy in COVID-19 patients. Med Hypotheses 2021; 147:110475.
176. Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses 2020; 143:109878.
177. Skesters A, Kustovs D, Lece A, et al. Selenium, selenoprotein P, and oxidative stress levels in SARS-CoV-2 patients during illness and recovery. Inflammopharmacol 2022; 30(2):499-503.
178. Voelkle M, Gregoriano C, Neyer P, et al. Prevalence of micronutrient deficiencies in patients hospitalized with COVID-19: An observational cohort study. Nutrients 2022; 14(9):1862.
179. Zhang HY, Zhang AR, Lu QB, et al. Association between fatality rate of COVID-19 and selenium deficiency in China. BMC Infect Dis 2021; 21(1):1-8.
180. Nimer RM, Khabour OF, Swedan SF, et al. The impact of vitamin and mineral supplements usage prior to COVID-19 infection on disease severity and hospitalization. Biomol Biomed 2022; 22(5):826-32.
181. Intakes SCotSEoDR, Medicine Io, Board N. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride: Dietary Reference Intakes (Pap; 1997.
182. Rude R. Magnesium-Encyclopedia of Dietary Supplements. New York: Informa Healthcare. 2010.
183. De Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Phys Rev 2015.
184. Liu M, Dudley Jr SC. Magnesium, oxidative stress, inflammation, and cardiovascular disease. Antioxidants 2020; 9(10):907.
185. DiNicolantonio JJ, O’Keefe JH. Magnesium and vitamin D deficiency as a potential cause of immune dysfunction, cytokine storm and disseminated intravascular coagulation in COVID-19 patients. Missouri medicine. 2021; 118(1):68.
186. Quilliot D, Bonsack O, Jaussaud R, et al. Dysmagnesemia in Covid-19 cohort patients: prevalence and associated factors. Magnes Res 2020; 33(4):114-22.
187. Al-Hakeim HK, Al-Jassas HK, Morris G, et al. Increased ACE2, sRAGE, and immune activation, but lowered calcium and magnesium in COVID-19. Recent Advances in Inflammation & Allergy Drug Discovery 2022; 16(1):32-43.
188. Tan CW, Ho LP, Kalimuddin S, et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition 2020; 79:111017.
189. Malinowska J, Małecka-Giełdowska M, Bańkowska D, et al. Hypermagnesemia and hyperphosphatemia are highly prevalent in patients with COVID-19 and increase the risk of death. International J Infect Dis 2022; 122:543-9.
Files
IssueVol 12 No 4 (2024) QRcode
SectionReview Articles
Keywords
COVID-19 Dysbiosis Gut microbiota Probiotics Prebiotics Vitamins.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Fazli P, Saberifard S, Azimi M, Miri Kordkandi Z, Zandi B, Roozbahani F, Malekzadegan Y, Ghodratie M, Sameni F. Possible Link between Gut Microbiota, Diet, and COVID-19 Infection. J Med Bacteriol. 2024;:76-98.