The Role and Relationship of Different Bacteria in Alzheimer’s Disease: Effects; Pathogenesis; Complication
Abstract
Background: The Alzheimer's association restated the necessity of the brain gut axis within the context of studying the disease. With its broad-spectrum impact cutting across mnemonics, degeneration of cortex, and neurology, Alzheimer's disease is known as a neurodegenerative disease. Rising gudiance implicate AD as a progressive disease of the Gut microbe dysbiosis with the gut ecosystem destruction resulting in the cascade of neuroinconsistency, accumulation of amyloid-β, compromise of blood brain barrier, and the impairment. Metabolic aberration along with the inflammation caused by microbes such as Chlamydia pneumoniae, Helicobacter pylori and Porphyromonas gingivalis have advanced the degeneration of the Alzhemers patient. The cyclic attack set forth by the bacterials in the brain together with the systemic cytokine secretion creates an inflammation and neurodegeneration enhancing loop which cannot be broken. Such potential microb target therapies which aim not on the total elimination of the disease but on its on-going replacement are being later on presented within this review alongside with detailed explanation of the above mechanism.
Conclusion: Alzheimer’s disease relates to gut-brain axis; gut issues can cause inflammation and cognitive problems. Certain bacteria may worsen AD. Microbiome therapies could help; future research should target key microbial strains and conduct clinical trials for treatments
2. Agirman G, Yu KB, Hsiao EY. Signaling inflammation across the gut-brain axis. Science 2021; 374(6571):1087-92.
3. Fang Z, Li L, Zhao J, et al. Bifidobacteria adolescentis regulated immune responses and gut microbial composition to alleviate DNFB-induced atopic dermatitis in mice. Eur J Nutr 2020; 59(7):3069-81.
4. Larroya-García A, Navas-Carrillo D, Orenes-Piñero E. Impact of gut microbiota on neurological diseases: Diet composition and novel treatments. Crit Rev Food Sci Nutr 2019; 59(19):3102-16.
5. Wang H, Lee IS, Braun C, et al. Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J Neurogastroenterol Motil 2016; 22(4):589-605.
6. Seo DO, Holtzman DM. Gut microbiota: from the forgotten organ to a potential key player in the pathology of Alzheimer's disease. J Gerontol A Biol Sci Med Sci 2020; 75(7):1232-41.
7. Shoemark DK, Allen SJ. The microbiome and disease: reviewing the links between the oral microbiome, aging, and Alzheimer's disease. J Alzheimers Dis 2015; 43(3):725-38.
8. Atri A. The Alzheimer's disease clinical spectrum: diagnosis and management. Med Clin North Am 2019; 103(2):263-93.
9. Trevisan K, Cristina-Pereira R, Silva-Amaral D, et al. theories of aging and the prevalence of Alzheimer's disease. Biomed Res Int 2019; 2019:9171424.
10. Harris JR. Protein aggregation and fibrillogenesis in cerebral and systemic amyloid disease: Springer Science & Business Media; 2012.
11. Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules 2020; 25(24).
12. Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study. Lancet 2005; 366(9503):2112-7.
13. Garbuz DG, Zatsepina OG, Evgen’ev MB. Beta amyloid, tau protein, and neuroinflammation: an attempt to integrate different hypotheses of Alzheimer’s disease pathogenesis. Mol Bio 2021; 55:670-82.
14. Kamer AR, Craig RG, Dasanayake AP, et al. Inflammation and Alzheimer's disease: possible role of periodontal diseases. Alzheimer's & Dementia 2008; 4(4):242-50.
15. Sochocka M, Donskow-Łysoniewska K, Diniz BS, et al. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—a critical review. Mol Neurobiol 2019; 56:1841-51.
16. Landry RL, Embers ME. Does dementia have a microbial cause? NeuroSci 2022; 3(2):262-83.
17. Sait A, Angeli C, Doig AJ, et al. Viral involvement in Alzheimer’s disease. ACS Chem Neurosci 2021; 12(7):1049-60.
18. Wozniak M, Mee A, Itzhaki R. Herpes simplex virus type 1 DNA is located within Alzheimer's disease amyloid plaques. J Pathology 2009; 217(1):131-8.
19. Ashraf GM, Tarasov VV, Makhmutovа A, et al. The possibility of an infectious etiology of alzheimer disease. Mol Neurobiol 2019; 56(6):4479-91.
20. Miklossy J, Kis A, Radenovic A, et al. Beta-amyloid deposition and Alzheimer's type changes induced by Borrelia spirochetes. Neurobiol Aging 2006; 27(2):228-36.
21. Wozniak MA, Itzhaki RF, Shipley SJ, et al. Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neurosci Lett 2007; 429(2-3):95-100.
22. Ramesh G, Alvarez AL, Roberts ED, et al. Pathogenesis of lyme neuroborreliosis: Borrelia burgdorferi lipoproteins induce both proliferation and apoptosis in rhesus monkey astrocytes. Eur J Immunol 2003; 33(9):2539-50.
23. Ho GJ, Drego R, Hakimian E, et al. Mechanisms of cell signaling and inflammation in Alzheimer's disease. Curr Drug Targets Inflamm Allergy 2005; 4(2):247-56.
24. Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2012; 2(1):a006346.
25. Ajayi A, Jolaiya T, Smith S. Evolving technologies in gastrointestinal microbiome era and their potential clinical applications. J Clin Med 2020; 9(8):2565.
26. Kho ZY, Lal SK. The human gut microbiome - a potential controller of wellness and disease. Front Microbiol 2018; 9:1835.
27. Khaledi M, Sameni F, Gholipour A, et al. Potential role of gut microbiota in major depressive disorder: A review. Heliyon 2024; 10(12):e33157.
28. Singh R, Zogg H, Wei L, et al. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders. J Neurogastroenterol Motil 2021; 27(1):19-34.
29. Beydoun MA, Beydoun HA, Hossain S, et al. Clinical and bacterial markers of periodontitis and their association with incident all-cause and alzheimer's disease dementia in a large national survey. J Alzheimers Dis 2020; 75(1):157-72.
30. Nie R, Wu Z, Ni J, et al. Porphyromonas gingivalis infection induces amyloid-β accumulation in monocytes/macrophages. J Alzheimers Dis 2019; 72(2):479-94.
31. Kennedy KM, de Goffau MC, Perez-Muñoz ME, et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 2023; 613(7945):639-49.
32. Dodiya HB, Kuntz T, Shaik SM, et al. Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. J Exp Med 2019; 216(7):1542-60.
33. Chacko A, Delbaz A, Walkden H, et al. Chlamydia pneumoniae can infect the central nervous system via the olfactory and trigeminal nerves and contributes to Alzheimer's disease risk. Sci Rep 2022; 12(1):2759.
34. Gérard HC, Dreses-Werringloer U, Wildt KS, et al. Chlamydophila (Chlamydia) pneumoniae in the Alzheimer's brain. FEMS Immunol Med Microbiol 2006; 48(3):355-66.
35. Senejani AG, Maghsoudlou J, El-Zohiry D, et al. Borrelia burgdorferi co-localizing with amyloid markers in alzheimer's disease brain tissues. J Alzheimers Dis 2022; 85(2):889-903.
36. Williams ZAP, Lang L, Nicolas S, et al. Do microbes play a role in Alzheimer's disease? Microb Biotechnol 2024; 17(4):e14462.
37. Faruqui NA, Prium DH, Mowna SA, et al. Gut microorganisms and neurological disease perspectives. Future Neurology 2021; 16(1):FNL53.
38. Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 2019; 16(8):461-78.
39. Tang W, Zhu H, Feng Y, et al. The impact of gut microbiota disorders on the blood-brain barrier. Infect Drug Resist 2020; 13:3351-63.
40. Rutsch A, Kantsjö JB, Ronchi F. The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front Immunol 2020; 11:604179.
41. Dissanayaka DMS, Jayasena V, Rainey-Smith SR, et al. The role of diet and gut microbiota in alzheimer's disease. Nutrients 2024; 16(3).
42. Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017; 49:60-8.
43. González MF, Díaz P, Sandoval-Bórquez A, et al. Helicobacter pylori outer membrane vesicles and extracellular vesicles from Helicobacter pylori-infected cells in gastric disease development. Int J Mol Sci 2021; 22(9).
44. Furuyama N, Sircili MP. Outer membrane vesicles (omvs) produced by gram-negative bacteria: structure, functions, biogenesis, and vaccine application. Biomed Res Int 2021; 2021:1490732.
45. Zhang Z, Liu D, Liu S, et al. The role of Porphyromonas gingivalis outer membrane vesicles in periodontal disease and related systemic diseases. Front Cell Infect Microbiol 2020; 10:585917.
46. Behrouzi A, Vaziri F, Riazi Rad F, et al. Comparative study of pathogenic and non-pathogenic Escherichia coli outer membrane vesicles and prediction of host-interactions with TLR signaling pathways. BMC Res Notes 2018; 11(1):539.
47. Chen G, Sun Q, Cai Q, et al. Outer membrane vesicles from fusobacterium nucleatum switch m0-like macrophages toward the m1 phenotype to destroy periodontal tissues in mice. Front Microbiol 2022; 13:815638.
48. Ho MH, Chen CH, Goodwin JS, et al. Functional advantages of Porphyromonas gingivalis vesicles. PLoS One 2015; 10(4):e0123448.
49. He Y, Shiotsu N, Uchida-Fukuhara Y, et al. Outer membrane vesicles derived from Porphyromonas gingivalis induced cell death with disruption of tight junctions in human lung epithelial cells. Arch Oral Biol 2020; 118:104841.
50. Chen S, Lei Q, Zou X, et al. The role and mechanisms of gram-negative bacterial outer membrane vesicles in inflammatory diseases. Front Immunol 2023; 14:1157813.
51. Yang J, Liang J, Hu N, et al. The gut microbiota modulates neuroinflammation in alzheimer's disease: elucidating crucial factors and mechanistic underpinnings. CNS Neurosci Ther 2024; 30(10):e70091.
52. Sochocka M, Donskow-Łysoniewska K, Diniz BS, et al. The gut microbiome alterations and inflammation-driven pathogenesis of alzheimer's disease-a critical review. Mol Neurobiol 2019; 56(3):1841-51.
53. Park G, Kadyan S, Nagpal R, editors. 2960. A Gut Pathobiont Triggers Neuroinflammation and Neurocognitive Impairment via Breaching the Gut-Brain Axis in a Preclinical Model of Alzheimer’s Disease: From Microbial Pathogenesis to Neuropathogenesis. Open Forum Infectious Diseases; 2023: Oxford University Press US.
54. Bedon JCR, Altamirano MBA, Lasluiza MWC, et al. The relationship between the gut microbiome and the development of Alzheimer's disease: a review. Inter J Health Sci 2024; 4:90.
55. Wojtuś M, Tomaszuk S, Wąsik K. pathogenesis and treatment of Alzheimer The role of the gut microbiota in the disease–review. J Edu Health Sport 2024; 51:11-20.
56. Beydoun MA, Beydoun HA, Hossain S, et al. Clinical and bacterial markers of periodontitis and their association with incident all-cause and alzheimer's disease dementia in a large national survey. J Alzheimers Dis 2020; 75(1):157-72.
57. Gérard HC, Dreses-Werringloer U, Wildt KS, et al. Chlamydophila (Chlamydia) pneumoniae in the Alzheimer's brain. FEMS Immunol Med Microbiol 2006; 48(3):355-66.
58. Senejani AG, Maghsoudlou J, El-Zohiry D, et al. Borrelia burgdorferi co-localizing with amyloid markers in alzheimer's disease brain tissues. J Alzheimers Dis 2022; 85(2):889-903.
59. Williams ZAP, Lang L, Nicolas S, et al. Do microbes play a role in Alzheimer's disease? Microb Biotechnol 2024; 17(4):e14462.
60. Faruqui NA, Prium DH, Mowna SA, et al. Gut microorganisms and neurological disease perspectives. Future Neurology 2021; 16(1):FNL53.
61. Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 2019; 16(8):461-78.
62. Tang W, Zhu H, Feng Y, et al. The Impact of gut microbiota disorders on the blood-brain barrier. Infect Drug Resist 2020; 13:3351-63.
63. González MF, Díaz P, Sandoval-Bórquez A, et al. Helicobacter pylori outer membrane vesicles and extracellular vesicles from Helicobacter pylori-infected cells in gastric disease development. Int J Mol Sci 2021; 22(9).
64. Chen S, Lei Q, Zou X, et al. The role and mechanisms of gram-negative bacterial outer membrane vesicles in inflammatory diseases. Front Immunol 2023; 14:1157813.
65. Rutsch A, Kantsjö JB, Ronchi F. The Gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front Immunol 2020; 11:604179.
Issue | Vol 13 No 2 (2025) | |
Section | Review Articles | |
Keywords | ||
Alzheimer’s disease Bacteria Gut Microbiota. |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |