Comparative Phylogeny of the Genus Bordetella Using Sequence Analysis of 16S rRNA and ompA Genes

  • Ali Badamchi Mail Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.
  • Moslem Papizadeh Department of Microbiology, Pasteur Institute of Iran (IPI), Tehran, Iran.
Alcaligenaceae, Biogeography, Bordetella species, Ecological distribution, Phylogenetic species concept


Background:   The genus Bordetella harbors 16 species; three of them are well-known for their high medical importance. The phylogenetic diversity of the genus is currently not very well investigated.Methods:    In this study, 16S rRNA gene sequence of 16 type strains of the Bordetella species were analyzed. Also, phylogenies conducted on the same gene of 247 isolates of Bordetella species, comprising a wide physiological as well as ecological diversity and encompassing ex-type representatives of the 16 Bordetella species, were analyzed.  Results:   It was found that the phylogenetic diversity of the genus may be very different from that is currently assumed. Interestingly, the 16S rRNA gene signals could not resolve some species with promising bootstrap and posterior probability values as our phylogenies, using maximum likelihood and Bayesian inference methods, showed.Conclusion:   Our results indicate a probable need for additional phylogenetic signals which can be provided by coding genes. Therefore, sequence data of ompA gene of Bordetella species, a critically significant genomic region in pathogenesis, was here analyzed, phylogenetically. This gene confirmed the tree topology and the phylogenetic species boundaries already revealed by the 16S rRNA gene, but showed a better discriminatory power which resolved Bordetella species with higher statistically significant values.


Rahimi F, Talebi M, Saifi M, Pourshafie MR. Distribution of enterococcal species and detection of vancomycin resistance genes by multiplex PCR in Tehran sewage. Iran Biomed J 2007; 11(3): 161–7.

Talebi, M., F. Rahimi, M. Katouli, I. et al. 2007. Prevalence and antimicrobial resistance of enterococcal species in sewage treatment plants in Iran. Water Air Soil Pollut 2007; 185: 111–119.

Papizadeh M, Roayaei Ardakani M, Motamedi H (2017) Growth-phase dependent biodesulfurization of dibenzothiophene by Enterobacter sp. strain NISOC-03. Pollution 3(1):101–111.

Papizadeh M, Roayaei Ardakani M, Ebrahimipour G, et al. (2010) Utilization of dibenzothiophene as sulfur source by Microbacterium sp. NISOC-06. World J Microbiol Biotechnol 26:1195–1200.

Papizadeh M, Roayaei Ardakani M, Motamedi H, et al. (2011) C-S targeted biodegradation of dibenzothiophene by Stenotrophomonas sp. NISOC-04. Appl Biochem Biotechnol 165: 938–948.

Papizadeh M, Roayaei Ardakani M (2010). Bio filtration of volatile sulphurous hydrocarbon-polluted air by hydrocarbon degrading Pseudomonas NISOC-11. J Biotechnol 150:209–210.

Gerlach G, von Wintzingerode F, Middendorf B, et al. Evolutionary trends in the genus Bordetella. Microb Infect 2001; 3(1): 61–72.

von Wintzingerode F, Schattke A, Siddiqui RA, et al. Bordetella petrii sp. nov., isolated from an anaerobic bioreactor, and emended description of the genus Bordetella. IJSEM 2001 51(4): 1257–65.

Lehmann PF. PR Murray, EJ Baron, et al, eds. Manual of clinical microbiology. Mycopathologia 1999; 146(2): 107–8.

Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005; 18(2): 326–82.

Register KB, Ivanov YV, Harvill ET, et al. Novel, host-restricted genotypes of Bordetella bronchiseptica associated with phocine respiratory tract isolates. Microbiology 2015; 161(3): 580–92.

Cummings CA, Brinig MM, Lepp PW, et al. Bordetella species are distinguished by patterns of substantial gene loss and host adaptation. J Bacteriol 2004; 186(5): 1484–92.

Vandamme P, Hommez J, Vancanneyt M, et al. Bordetella hinzii sp. nov., isolated from poultry and humans. IJSEM. 1995; 45(1): 37–45.

Vandamme P, Heyndrickx M, Vancanneyt M, et al. Bordetella trematum sp. nov., isolated from wounds and ear infections in humans, and reassessment of Alcaligenes denitrificans Rüger and Tan 1983. IJSEM 1996; 46(4): 849–58.

Tang YW, Hopkins MK, Kolbert CP, et al. Bordetella holmesii-like organisms associated with septicemia, endocarditis, and respiratory failure. Clin Infect Dis 1998; 26(2): 389–92.

Weyant RS, Hollis DG, Weaver RE, et al. Bordetella holmesii sp. nov., a new gram-negative species associated with septicemia. J Clin Microbiol 1995; 33(1): 1–7.

Abouanaser SF, Srigley JA, Nguyen T, et al. Bordetella holmesii, an emerging cause of septic arthritis. J Clin Microbiol 2013; 51(4): 1313–5.

Nagata JM, Charville GW, Klotz JM, et al. Bordetella petrii sinusitis in an immunocompromised adolescent. Pediatr Infect Dis J 2015; 34(4): 458.

Kattar MM, Chavez JF, Limaye AP, et al. Application of 16S rRNA gene sequencing to identify Bordetella hinzii as the causative agent of fatal septicemia. J Clin Microbiol 2000; 38(2): 789–94.

Fry NK, Duncan J, Edwards MT, et al. A UK clinical isolate of Bordetella hinzii from a patient with myelodysplastic syndrome. J Clin Microbiol 2007; 56(12): 1700–3.

Vandamme P, Heyndrickx M, Vancanneyt M, et al. Bordetella trematum sp. nov., isolated from wounds and ear infections in humans, and reassessment of Alcaligenes denitrificans Rüger and Tan 1983. IJSEM 1996; 46(4): 849–58.

Ko KS, Peck KR, Oh WS, et al. New species of Bordetella, Bordetella ansorpii sp. nov., isolated from the purulent exudate of an epidermal cyst. J Clin Microbiol 2005; 43(5): 2516–9.

Spilker T, Darrah R, LiPuma JJ. Complete genome sequences of Bordetella flabilis, Bordetella bronchialis, and Bordetella pseudohinzii. Genome Announc 2016; 4(5): e01132–16.

Vandamme PA, Peeters C, Cnockaert M, et al. Bordetella bronchialis sp. nov., Bordetella flabilis sp. nov. and Bordetella sputigena sp. nov., isolated from human respiratory specimens, and reclassification of Achromobacter sediminum Zhang et al. 2014 as Verticia sediminum gen. nov., comb. nov. IJSEM. 2015; 65(10): 3674–82.

Ivanov YV, Linz B, Register KB, et al. Identification and taxonomic characterization of Bordetella pseudohinzii sp. nov. isolated from laboratory-raised mice. IJSEM 2016; 66(12): 5452–9.

Saba F, Papizadeh M, Khansha J, et al. A rapid and reproducible genomic dna extraction protocol for sequence-based identification of archaea, bacteria, cyanobacteria, diatoms, fungi, and green algae. J Med bacteriol 2017; 5(3-4): 22–8.

Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol biol evol 2013; 30(12): 2725–9.

Cole JR, Wang Q, Fish JA, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic acids res 2013: gkt1244.

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol biol evol 2013; 30(4): 772–80.

Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 2009; 537: 39–64.

McWilliam H, Li W, Uludag M, et al. Analysis tool web services from the EMBL-EBI. Nucleic acids res 2013; 41(W1): W597–600.

Papizadeh M, Soudi MR, Amini L, et al. Pyrenochaetopsis tabarestanensis (Cucurbitariaceae, Pleosporales), a new species isolated from rice farms in north Iran. Phytotaxa 2017; 297(1): 15–28.

Papizadeh M, Wijayawardene NN, Amoozegar MA, et al. Neocamarosporium jorjanensis, N. persepolisi, and N. solicola spp. nov. (Neocamarosporiaceae, Pleosporales) isolated from saline lakes of Iran indicate the possible halotolerant nature for the genus. Mycol Progress 2017; 1-19.

Papizadeh M, Rohani M, Nahrevanian H, et al. Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends. Microb Pathog 2017; 111: 118–31.

Papizadeh M, Pourshafie MR. Niche-specific genome evolution in gastrointestinal probiotics. Biomed J Sci & Tech Res 1 (3).

Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28(10): 2731–9.

Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016:msw054.

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001; 17(8): 754–5.

Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE), 2010 2010 (pp. 1-8). Ieee.

Nylander JA, Ronquist F, Huelsenbeck JP, et al. Bayesian phylogenetic analysis of combined data. Syst Biol 2004; 53(1): 47–67.

Lemey P, Rambaut A, Drummond AJ, et al. Bayesian phylogeography finds its roots. PLoS Comput Biol 2009; 5(9): e1000520.

Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016; 351(6271): 361–5.

Rambaut A, Pybus OG, Nelson MI, et al. The genomic and epidemiological dynamics of human influenza A virus. Nature. 2008; 453(7195): 615–9.

Soumana IH, Linz B, Harvill ET. Environmental origin of the genus Bordetella. Front Microbiol 2017; 8: 28.

How to Cite
Badamchi A, Papizadeh M. Comparative Phylogeny of the Genus Bordetella Using Sequence Analysis of 16S rRNA and ompA Genes. J Med Bacteriol. 6(3-4):1-13.
Original Articles