Review Articles

A Comprehensive Review of Herbal Recommendations with the Potential to Inhibit COVID-19 Infection

Abstract

Background:      The outbreak of Coronavirus Disease 2019 (COVID-19) has originated from Wuhan, China and rapidly spread all over the world. This disease is caused by a coronavirus termed Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) that mainly infects the human respiratory tract. Herbal agents including Atractylodes lancea, Ephedra, Curcumin, and Echinacea purpurea had immunomodulatory effects and antiviral activities on other respiratory viruses including Influenza virus. They strengthen the innate immunity through increasing the phagocytic activity and anti-inflammatory activity. These herbs could be used as a complementary therapy to prevent entry of COVID-19 and improve immune system.  This review delves into the role and therapeutic compounds of various herbal agents in relation to immunity, their effectiveness in treating other viral respiratory illnesses, and their potential influence on COVID-19 disease.

1. Gaidarzhy M, Holubenko A, Nuzhyna N, et al. Ontogenesis of Pelargonia sidoides (Geraniaceae) under greenhouse conditions. Regul Mech Biosyst 2019; 10(2):159-64.
2. Chuchalin A, Berman B, Lehmacher W. Treatment of acute bronchitis in adults with a Pelargonium sidoides preparation (EPs® 7630): a randomized, double-blind, placebo-controlled trial. Explore 2005;1(6):437-45.
3. Papies J, Emanuel J, Heinemann N, et al. Corrigendum: Antiviral and Immunomodulatory Effects of Pelargonium sidoides DC. Root Extract EPs® 7630 in SARS-CoV-2-Infected Human Lung Cells. Front. pharmacol 2021:3603.
4. Delfan B, Kazemeini H, Bahmani M. Identifying effective medicinal plants for cold in Lorestan province, West of Iran. eCAM 2015; 20(3):173-9.
5. Sedighimehr N, Fathi J, Hadi N, et al. Rehabilitation, a necessity in hospitalized and discharged people infected with COVID-19: a narrative review. Phys Ther Rev 2021; 26(3):202-10.
6. Khaledi M, Sameni F, Yahyazade S, et al. COVID-19 and the potential of Janus family kinase (JAK) pathway inhibition: A novel treatment strategy. Front med 2022; 9:961027.
7. Das K. Herbal plants as immunity modulators against COVID-19: A primary preventive measure during home quarantine. J Herb Med 2022; 32: 100501.
8. Branson B, Tavakoli R, Khaledi M, et al. The correlations between epidemiological and clinical characteristics, laboratory tests and ct scan reports in the diagnosis of cases 2019 novel coronavirus pneumonia. A diagnostic accuracy study. Acta Medica Iranica 2021; 10:578-86.
9. Sameni F, Khosravi-Dehaghi N, Hajikhani B, et al. Diagnostic testing for coronavirus disease 2019: A Narrative Review. Int J Enteric Pathog 2021; 9(4):145-52.
10. Sameni F, Shahrjerdi S, Khorram A, et al. COVID-19 and diabetes: a narrative review. Int. J Enteric Pathog 2021; 9(2):70-7.
11. Roshni J, Vaishali R, Ganesh K, et al. Multi-target potential of Indian phytochemicals against SARS-CoV-2: A docking, molecular dynamics and MM-GBSA approach extended to Omicron B. 1.1. 529. J Infect Public Health 2022; 15(6):662-9.
12. Prakash P, Gupta N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian J Physiol Pharmacol 2005; 49(2):125.
13. Shree P, Mishra P, Selvaraj C, et al. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)–a molecular docking study. J Biomol Struct Dyn 2022; 40(1):190-203.
14. Mukherjee PK., Nema NK., Bhadra S, et al. Immunomodulatory leads from medicinal plants. Indian J Traditional Knowledge 2004; 13(2):235–256.
15. Mondal S, Varma S, Bamola VD, et al. Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers. J. Ethnopharmacol 2011; 136(3):452-6.
16. Yamada AN, Grespan R, Yamada ÁT, et al. Anti-inflammatory activity of Ocimum americanum L. essential oil in experimental model of zymosan-induced arthritis. Am J Chin Med 2013; 41(04):913-26.
17. Jadhav P, Lal H, Kshirsagar N. Assessment of potency of PC-complexed Ocimum sanctum methanol extract in embryonated eggs against Influenza virus (H1N1). Pharmacogn Mag 2014;10(Suppl 1):S86.
18. Rehman H, Yasin KA, Choudhary MA, et al. Studies on the chemical constituents of Phyllanthus emblica. Nat Prod Res 2007; 21(9):775-81.
19. Liu X, Cui C, Zhao M, et al. Identification of phenolics in the fruit of emblica (Phyllanthus emblica L.) and their antioxidant activities. Food chem 2008; 109(4):909-15.
20. Aucoin M, Cooley K, Saunders PR, et al. The effect of Echinacea spp. on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: A rapid review. Adv Integr Med 2020; 7(4):203-17.
21. Coperchini F, Chiovato L, Croce L, et al. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53:25-32.
22. Percival SS. Use of Echinacea in medicine. Biochem pharmacol 2000; 60(2):155-8.
23. Freier DO, Wright K, Klein K, et al. Enhancement of the humoral immune response by Echinacea purpurea in female Swiss mice. Immunopharmacol. Immunotoxicol 2003; 25(4):551-60.
24. Vimalanathan S, Schoop R, Suter A, et al. Prevention of influenza virus induced bacterial superinfection by standardized Echinacea purpurea, via regulation of surface receptor expression in human bronchial epithelial cells. Virus res 2017; 233:51-9.
25. Fusco D, Liu X, Savage C, et al. Echinacea purpurea aerial extract alters course of influenza infection in mice. Vaccine 2010; 28(23):3956-62.
26. Akhzari M, Shabani-Borujeni M, Tavakoli R, et al. Zingiber officinale (Ginger) properties in clinical trials; a brief review. Plant Biotechnol Persa 2022;4(2):89-102.
27. Bachmeier BE, Killian PH, Melchart D. The role of curcumin in prevention and management of metastatic disease. Int J Mol Sci 2018; 19(6):1716.
28. Sharma RK, Cwiklinski K, Aalinkeel R, et al. Immunomodulatory activities of curcumin-stabilized silver nanoparticles: Efficacy as an antiretroviral therapeutic. Immunol invest 2017; 46(8):833-46.
29. Ou JL, Mizushina Y, Wang SY, et al. Structure–activity relationship analysis of curcumin analogues on anti‐influenza virus activity. FEBS J 2013; 280(22):5829-40.
30. Thimmulappa RK, Mudnakudu-Nagaraju KK, Shivamallu C, et al. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon 2021; 7(2):e06350.
31. Lelli D, Sahebkar A, Johnston TP, et al. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol Res 2017; 115:133-48.
32. Auyeung KK, Han Q-B, Ko JK. Astragalus membranaceus: a review of its protection against inflammation and gastrointestinal cancers. Am J Chinese Med 2016; 44(01):1-22.
33. Yeh YC, Doan LH, Huang Z-Y, et al. Honeysuckle (Lonicera japonica) and Huangqi (Astragalus membranaceus) suppress SARS-CoV-2 entry and COVID-19 related cytokine storm in vitro. Front Pharmacol 2022; 12:765553.
34. Sharma D, Namdeo P, Singh P. Phytochemistry & pharmacological studies of glycyrrhiza glabra: A medicinal plant review. Int J Pharm Sci Rev Res 2021; 67(1):187-94.
35. Chakravarthi KK, Avadhani R, Narayan RS. Effect of Glycyrrhiza glabra root extract on learning and memory in wistar albino rats. Drug Invent Today 2012; 4(7):387-90.
36. Dhingra D, Sharma A. Antidepressant-like activity of Glycyrrhiza glabra L. in mouse models of immobility tests. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30(3):449-54.
37. Nourazarian SM, Nourazarian A, Majidinia M, et al. Effect of root extracts of medicinal herb Glycyrrhiza glabra on HSP90 gene expression and apoptosis in the HT-29 colon cancer cell line. APJCP 2016; 16(18):8563-6.
38. Abraham J, Florentine S. Licorice (Glycyrrhiza glabra) extracts-suitable pharmacological interventions for COVID-19? A review. Plants 2021; 10(12):2600.
39. Fan B, Zhu H. Improvement of emodin for lipid metabolism disorder in hyperlipidemia hamster. Chin Med 2014; 11:4-8.
40. Liu S, Sporer F, Wink M, et al. Anthraquinones in Rheum palmatum and Rumex dentatus (Polygonaceae), and phorbol esters in Jatropha curcas (Euphorbiaceae) with molluscicidal activity against the schistosome vector snails Oncomelania, Biomphalaria, and Bulinus. Trop. Med Int Health 1997; 2(2):179-88.
41. Yim H, Lee YH, Lee CH, et al. Emodin, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, selectively inhibits the activity of casein kinase II as a competitive inhibitor. Planta med 1999; 65(01):9-13.
42. Bourlière F. Tutin TG, Heywood VH, et al. Flora Europaea. Volume 1. Lycopodiaceae to Platanaceae. Cambridge, The University Press, 1964. Revue d'Écologie (La Terre et La Vie). 1965;19(1):196.
43. Kimoto T. Cytotoxic effects of substances in indigo plant (Polygonum tinctorium Lour.) on malignant tumor cells. Nat Med 1999; 53:72-9.
44. Akalin E, Ekici M, Alan Z, et al. Traditional Chinese medicine practices used in COVID-19 (Sars-cov 2/Coronavirus-19) treatment in clinic and their effects on the cardiovascular system. Turk Kardiyol Dern Ars 2020;48(4):410-24.
45. Chen BL, Wang YJ, Guo H, et al. Design, synthesis, and biological evaluation of crenatoside analogues as novel influenza neuraminidase inhibitors. Eur J Med Chem 2016; 109:199-205.
46. Chen J, Duan M, Zhao Y, et al. Saikosaponin A inhibits influenza A virus replication and lung immunopathology. Oncotarget 2015; 6(40):42541.
47. Shiba M, Kondo K, Miki E, et al. Identification of medicinal Atractylodes based on ITS sequences of nrDNA. Biol Pharm Bull 2006; 29(2):315-20.
48. Zhu X, Song R, Wu Z, et al. Standard cultivation of atractylodes in pingjiang county, Hunan Province. Chinese Journal of Tropical Agriculture 2015;35(5):19-22.
49. Zhang H, Li J, Si J, et al. Atramacronoids A− C, three eudesmanolide sesquiterpene-phenol hybrids with an unprecedented C− C linkage from the rhizomes of Atractylodes macrocephala. Chin Chem Lett 2023; 34(1):107743.
50. Zhang Q, Yue S, Wang W, et al. Potential role of gut microbiota in traditional Chinese medicine against COVID-19. Am J Chinese Med 2021; 49(04):785-803.
51. Tong H, Zheng X, Song J, et al. Radical scavenging activity of sulfated Bupleurum chinense polysaccharides and their effects against oxidative stress-induced senescence. Carbohydr polym 2018; 192:143-9.
52. Abalaka M, Oyewole O, Kolawole A. Antibacterial activities of Azadirachta indica against some bacterial pathogens. Adv Life Sci 2012; 2(2):5-8.
53. Paul R, Prasad M, Sah NK. Anticancer biology of Azadirachta indica L (neem): a mini review. Cancer biol ther 2011; 12(6):467-76.
54. Bhowmik D, Chiranjib YJ, Tripathi K, et al. Herbal remedies of Azadirachta indica and its medicinal application. J Chem Pharm Res 2010; 2(1):62-72.
55. Roy S, Bhattacharyya P. Possible role of traditional medicinal plant Neem (Azadirachta indica) for the management of COVID-19 infection. Int J Res Pharm Sci 2020;11(Special Issue 1):122.
56. Nesari TM, Bhardwaj A, ShriKrishna R, et al. Neem (Azadirachta indica A. Juss) capsules for prophylaxis of COVID-19 infection: a pilot, double-blind, randomized controlled trial. Altern Ther Health Med 2021; 27(S1):196-203.
57. Rehman SU, Choe K, Yoo HH. Review on a traditional herbal medicine, Eurycoma longifolia Jack (Tongkat Ali): its traditional uses, chemistry, evidence-based pharmacology and toxicology. Molecules 2016; 21(3):331.
58. Ang H, Ngai T, Tan T. Effects of Eurycoma longifolia Jack on sexual qualities in middle aged male rats. Phytomedicine 2003; 10(6-7):590-3.
59. Thu HE, Mohamed IN, Hussain Zet al. Eurycoma longifolia as a potential adoptogen of male sexual health: A systematic review on clinical studies. Chin J Nat Med 2017; 15(1):71-80.
60. Choonong R, Ruangdachsuwan S, Churod T, et al. Evaluating the in Vitro Efficacy of Quassinoids from Eurycoma longifolia and Eurycoma harmandiana against Common Cold Human Coronavirus OC43 and SARS-CoV-2 Using In-Cell Enzyme-Linked Immunosorbent Assay. J Nat Prod 2022; 85(12):2779-88.
61. Lim XY, Teh BP, Tan TYC. Medicinal plants in COVID-19: potential and limitations. Front pharmacol 2021; 12:611408.
62. Gao B, Zhang J, Xie L. Structure analysis of effective chemical compounds against dengue viruses isolated from Isatis tinctoria. Can J Infect Dis Med Microbiol 2018;2018.
63. Lan Y, editor A Comparative study of the inhibitory effects of Rheum palmatum L. and Isatis Indigotica Root, on 3CLpro from SARS-CoV-2 Using Both Cell-based and Cell-free Assay Models. 2021 11th International Conference on Biomedical Engineering and Technology; 2021.
64. Mousavi SM, Hashemi SA, Behbudi G, et al. A review on health benefits of Malva sylvestris L. nutritional compounds for metabolites, antioxidants, and anti-inflammatory, anticancer, and antimicrobial applications. eCAM 2021; 2021:1-13.
65. Abu-Qatouseh LF, Boutennone H, Boussouf L, et al. In Vitro anti-Helicobacter pylori and urease inhibitory effects of polyphenolic extracts of local herbs from Algeria. Int Arab J Antimicrob Agents 2013;3(4).
66. Irfan A, Imran M, Khalid M, et al. Phenolic and flavonoid contents in Malva sylvestris and exploration of active drugs as antioxidant and anti-COVID19 by quantum chemical and molecular docking studies. J Saudi Chem Soc 2021; 25(8):101277.
67. Mahendran G, Rahman LU. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha piperita L.)—A review. Phytother Res 2020; 34(9):2088-139.
68. Ommi D, Saeedi N, Hajizadeh N, et al. Complementary Effects of Mentha piperita (Peppermint) and Rosa damascene Extract (Rose oil) on SpO2 in Patients with COVID-19: A Randomized Clinical Trial. Herb Med J 2020; 5(3):119-26.
69. Bellassoued K, Ben Hsouna A, Athmouni K, et al. Protective effects of Mentha piperita L. leaf essential oil against CCl4 induced hepatic oxidative damage and renal failure in rats. Lipids Health Dis 2018; 17(1):1-14.
70. Nergiz C, Ötleş S. Chemical composition of Nigella sativa L. seeds. Food chem 1993; 48(3):259-61.
71. Burits M, Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytother Res 2000; 14(5):323-8.
72. Shamim Molla M, Azad AK, Al Hasib MAA, et al. A review on antiviral effects of Nigella sativa L. PharmacologyOnline 2019; 2:47-53.
73. Randhawa MA, Alghamdi MS. Anticancer activity of Nigella sativa (black seed)—a review. Am J Chinese Med 2011; 39(06):1075-91.
74. Islam S, Ahsan M, Hassan CM, et al. Antifungal activities of the oils of Nigella sativa seeds. Pak J Pharm Sci 1989; 2(1):25-8.
75. Shirvani H, Rostamkhani F, Arabzadeh E, et al. Potential role of Nigella sativa supplementation with physical activity in prophylaxis and treatment of COVID-19: a contemporary review. Sport Sci Health 2021; 17(4):849-54.
76. Abbas AT, Abdel-Aziz MM, Zalata KR, et al. Effect of dexamethasone and Nigella sativa on peripheral blood eosinophil count, IgG1 and IgG2a, cytokine profiles and lung inflammation in murine model of allergic asthma. Egypt J Immunol 2005; 12(1):95-102.
77. Wei W, Du H, Shao C, et al. Screening of antiviral components of Ma Huang Tang and investigation on the ephedra alkaloids efficacy on influenza virus type A. Front Pharmacol 2019; 10:961.
78. Mei J, Zhou Y, Yang X, et al. Active components in Ephedra sinica stapf disrupt the interaction between ACE2 and SARS-CoV-2 RBD: Potent COVID-19 therapeutic agents. J ethnopharmacol 2021; 278:114303.
79. Papies J, Emanuel J, Heinemann N, et al. Antiviral and immunomodulatory effects of Pelargonium sidoides DC. root extract EPs® 7630 in SARS-CoV-2-infected human lung cells. Front Pharmacol 2021:2871.
80. Xing H, Yang J, Ren K, et al. Investigation on the metabolic characteristics of isobavachin in Psoralea corylifolia L.(Bu-gu-zhi) and its potential inhibition against human cytochrome P450s and UDP-glucuronosyltransferases. J. Pharm. Pharmacol 2020;72(12):1865-78.
81. Jiachuan L, Yijun T, Jie X, et al. Mechanisms of the Traditional Chinese Herb Atractylodes lancea against COVID-19 Based on Network Pharmacology and Molecular Docking. Wuhan Univ J Nat Sci 2022; 27(4):349-60.
82. Ríos JL. Chemical constituents and pharmacological properties of Poria cocos. Planta medica 2011; 77(07):681-91.
83. Jin J, Liu B, Zhang H, et al. Mutagenicity of Chinese traditional medicine Semen Armeniacae amarum by two modified Ames tests. BMC Complement Altern. Med 2009; 9(1):1-8.
84. Wang Y, Gu W, Kui F, et al. The mechanism and active compounds of semen armeniacae amarum treating coronavirus disease 2019 based on network pharmacology and molecular docking. Food Nutr Res 2021;65.
85. Adam GO. Bioactive compounds and herbal preparations implicated in the treatment of SARS-CoV-2. Coronavirus Drug Discovery: Elsevier; 2022. p. 71-83.
86. Mirunalini S, Krishnaveni M. Therapeutic potential of Phyllanthus emblica (amla): the ayurvedic wonder. JBCPP 2010; 21(1):93-105.
87. Li X, Qiu Q, Li M, et al. Chemical composition and pharmacological mechanism of ephedra glycyrrhiza drug pair against coronavirus disease 2019 (COVID-19). Aging 2021; 13(4):4811.
88. Khattak AK, Syeda M, Shahzad S. General overview of phytochemistry and pharmacological potential of Rheum palmatum (Chinese rhubarb). Innovare Journal of Ayurvedic Sciences 2020;8(6):1-5.
89. Zhu B, Zhang QL, Hua JW, et al.The traditional uses, phytochemistry, and pharmacology of Atractylodes macrocephala Koidz.: a review. J Ethnopharmacol 2018; 226:143-67.
90. Adam GO. Bioactive compounds and herbal preparations implicated in the treatment of SARS-CoV-2. Coronavirus Drug Discovery: Elsevier; 2022. p. 71-83.
Files
IssueVol 11 No 5-6 (2023) QRcode
SectionReview Articles
DOI https://doi.org/10.18502/jmb.v11i5-6.14362
Keywords
COVID-19, SARS-CoV-2, Herbal medicine, Traditional medicine

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Khaledi M, Sameni F, Amini-Khoei H, Bakhtiari M, Sedighimehr N, Fathi J, Ghiyasvand M, Mottaghiyan Z, Najafi S, Mohammadpour P, Shirzazd Z, Haghighatfard A, Validi M. A Comprehensive Review of Herbal Recommendations with the Potential to Inhibit COVID-19 Infection. J Med Bacteriol. 2023;11(5-6):49-69.